1

Supplementary Materials for

2 Reconfiguring the endogenous electric field of a

3 wound through the conductive hydrogel for effective

4 exudate management to enhance skin wound healing

- 5 Yukun Yan¹, Yuanyuan Chen¹, Hanqing Dai^{2*}, Wanlu Zhang^{1*}, Ruiqian Guo^{1,2*}
- ⁶ ¹*Institute for Electric Light Sources, Fudan University, Shanghai 200433, China.*
- 7 ²Academy for Engineering and Technology, Fudan University, Shanghai 200433,

8 China.

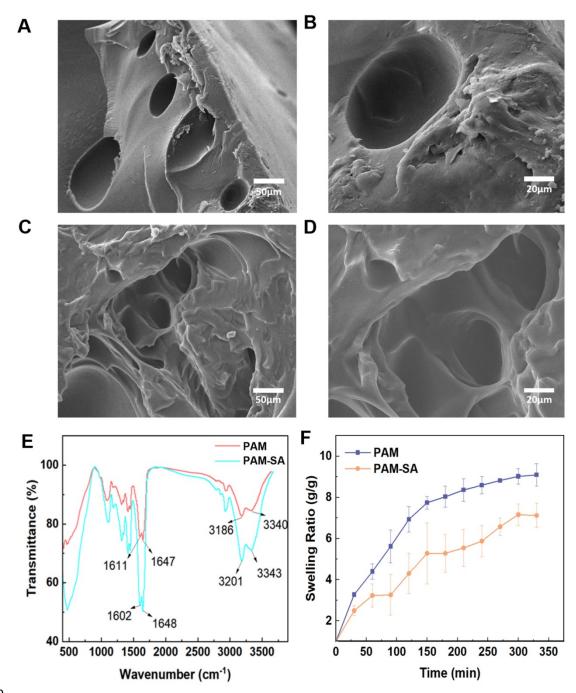
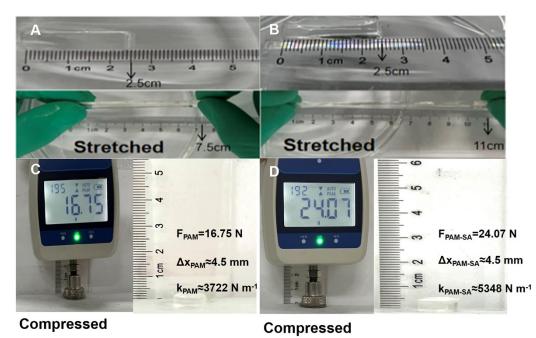



Figure S1. Characterization of Hydrogels. (A-D) SEM images of these hydrogels with different 10 magnifications. resulting in the formation of a lamellar double network structure. (E) FT-IR of 11 PAM-SA and PAM hydrogel.In PAM samples, the peak at 3343 and 3201 cm⁻¹ corresponded to 12 the stretching vibrations of the amino group -NH₂. The peak at 1648 cm⁻¹ was attributed to the 13 carbonyl C=O stretching band, while the peak at 1602 cm⁻¹ corresponded to the amino group -NH₂. 14 However, in PAM-SA samples, the stretching of -NH₂ group was shifted to 1611 and 1674 cm⁻¹, 15 and N-H stretching peaks at 3343 and 3201 cm⁻¹ were shifted to 3340 and 3186 cm⁻¹, respectively. 16 Additionally, the stretching of carbonyl C=O was shifted from 1648 cm⁻¹ (PAM) to 1647 cm⁻¹ 17 (PAM-SA hydrogel). (F) Swelling properties of PAM-SA and PAM. 18

19

20

21 Figure S2. Characterization of Toughness of Hydrogels. (A) Tensile properties of PAM. (B)

22 Tensile properties of PAM-SA. (C) Compression performance of PAM. (D) Compression

23 performance of PAM-SA.

24

25 Movie S1. This movie shows the detailed process of electric field reconstruction for 26 the wound site