Supporting Information

Phototherapeutic applications of benzophenone-containing NIRemitting photosensitizers based on different receptor modulations

Shuge Chen,^{a,b} Jianqing Li,^c Weidong Yin,^b Weiqiang Li,^b Xitong He,^b Hui Liang,^b Zarfar Mahmood,^b Yanping Huo,^b Zujin Zhao,^{*c} and Shaomin Ji^{*a,b}

Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, P. R. China. E-mail: smji@gdut.edu.cn 1. Synthesis

Scheme S1. Synthetic routes of CN-TPAQ-BP, ICN-TPAQ-BP, FCN-TPAQ-BP and ACN-TPAQ-BP.

1. ¹H and ¹³C NMR spectra

Fig. S1 ¹H NMR spectrum of TPA-T in CDCl₃.

Fig. S2 ¹H NMR spectrum of TPAQ-T in CDCl₃.

Fig. S4 ¹H NMR spectrum of CN-TPAQ in CDCl₃.

00.0---

-239

Fig. S5 ¹H NMR spectrum of ICN-TPAQ in CDCI₃.

Fig. S6 ¹H NMR spectrum of FCN-TPAQ in CDCl₃.

Fig. S7 ¹H NMR spectrum of ACN-TPAQ in CDCI₃.

Fig. S8 ¹H NMR spectrum of CN-TPAQ-BP in CDCl₃.

Fig. S9 ¹³C NMR spectrum of CN-TPAQ-BP in CDCI₃.

Fig. S10 ESI-MS spectrum of CN-TPAQ-BP.

Fig. S11 ¹H NMR spectrum of ICN-TPAQ-BP in CDCl₃

Fig. S12 ¹³C NMR spectrum of ICN-TPAQ-BP in CDCI₃.

Fig. S13 ESI-MS spectrum of ICN-TPAQ-BP.

Fig. S14 ¹H NMR spectrum of FCN-TPAQ-BP in CDCl₃

Fig. S15 ¹³C NMR spectrum of FCN-TPAQ-BP in CDCI₃.

Fig. S16 ESI-MS spectrum of FCN-TPAQ-BP.

Fig. S17 ¹H NMR spectrum of ACN-TPAQ-BP in CDCI₃.

Fig. S19 ESI-MS spectrum of ACN-TPAQ-BP.

3 Results and Discussion

3.1 Photophysical Properties

Table S1. Calculated energy of the singlet (S) and triplet (T) excited states

Compounds	CN-TPAQ-BP	ICN-TPAQ-BP	FCN-TPAQ-BP	ACN-TPAQ-BP
S 1	2.6030	2.6318	2.5962	2.5189
S ₂	3.5918	3.1041	3.1506	3.0053
S3	3.6477	3.5519	3.3335	3.2529
T1	1.7949	1.7048	1.3726	1.3023
T2	1.9217	1.9405	1.9202	1.8553
T ₃	2.8313	2.3326	2.4052	2.3979
Τ4	3.0127	2.8672	2.8189	2.7856
T 5	3.0754	3.0049	3.0125	2.9626
T ₆	3.3421	3.0113	3.0299	3.0098
T7	3.4155	3.1686	3.2828	3.1731

Table S2. Photophysical properties of the compounds

Compounds				τ (ns)		ROS vield		SOC
	λ _{abs} (nm)	λ _{em} (nm)	ε (M ⁻¹ cm ⁻¹)	τ1	Τ2	(RB=1)	Δ <i>Е</i> _{L-н} (eV)	constant (S1-T1)
CN-TPAQ-BP	496	806	18600	2.01	13.41	3.208	3.921	0.5630
ICN-TPAQ-BP	491	822	10400	1.87	14.32	3.493	4.128	0.450
FCN-TPAQ-BP	500	873	14800	2.10	13.49	4.760	3.928	0.6795
ACN-TPAQ-BP	500	815	21800	2.00	14.32	4.480	3.934	0.6363

3.2 AIE properties

Fig. S20 PL spectra of (A) CN-TPAQ-BP, (B) ICN-TPAQ-BP, (C) FCN-TPAQ-BP, (D) ACN-TPAQ-BP, in acetonitrile/diethyl ether mixture with different diethyl ether fractions (0-95%).

3.3 Photostability and solvation effect

Fig. S21 PL spectra of (A) CN-TPAQ-BP, (B) ICN-TPAQ-BP, (C) FCN-TPAQ-BP, (D) ACN-TPAQ-BP in different solvents (10 µM). (E) PL spectra of compounds in the solid state.

3.4 ROS generation

Fig. S22 ROS generation of (A) DCFH, (B) RB, (C) CN-TPAQ-BP, (D) ICN-TPAQ-BP, (E) FCN-TPAQ-BP, and (F) ACN-TPAQ-BP (1 µM) upon exposure to white light using DCFH (10 µM) as an indicator.

Fig. S23 Absorption of ABDA (50 µM, ¹O₂ probe) in water in the absence (blank, A) and presence of (B) CN-TPAQ-BP, (C) ICN-TPAQ-BP, (D) FCN-TPAQ-BP, (E) ACN-TPAQ-BP and (F) RB (10 µM) under white light irradiation for different time.

Fig. S24 PL spectra of DHR 123 (5 μM) in PBS in the presence of (A) blank, (B) CN-TPAQ-BP, (C) ICN-TPAQ-BP, (D) FCN-TPAQ-BP and (E) ACN-TPAQ-BP (1 μM) after exposure to white light irradiation (10 mW cm⁻²) with different time.

Fig. S25 PL spectra of HPF (5 μM, •OH probe) in the absence (blank, A) and presence of (B) CN-TPAQ-BP, (C) ICN-TPAQ-BP, (D) FCN-TPAQ-BP and (E) ACN-TPAQ-BP (1 μM) in PBS upon white light irradiation with 10 mW cm⁻² for different time.

Fig. S26 EPR signals of DMPO (10 µL) in the presence (A) CN-TPAQ-BP and (B) ICN-TPAQ-BP (C) FCN-TPAQ-BP in H₂O with/without white light irradiation (10 mW cm⁻²) for 5 min.

Fig. S27 (A-F) The absorbance spectra of ABDA (100 μM, ¹O₂ probe) in the presence of CN-TPAQ-BP (10 μM) in mixtures of DMSO and PBS with different PBS fractions (0%, 20%, 40%, 60%, 80% and 95%) upon white-light irradiation (10 mW cm⁻²).

Fig. S28 (A-F) The absorbance spectra of ABDA (100 µM, ¹O₂ probe) in the presence of ICN-TPAQ-BP (10 µM) in mixtures of DMSO and PBS with different PBS fractions (0%, 20%, 40%, 60%, 80% and 95%) upon white-light irradiation (10 mW cm²).

Fig. S29 (A-F) The absorbance spectra of ABDA (100 µM, ¹O₂ probe) in the presence of FCN-TPAQ-BP (10 µM) in mixtures of DMSO and PBS with different PBS fractions (0%, 20%, 40%, 60%, 80% and 95%) upon white-light irradiation (10 mW cm⁻²).

Fig. S30 (A-F) The absorbance spectra of ABDA (100 µM, ¹O₂ probe) in the presence of ACN-TPAQ-BP (10 µM) in mixtures of DMSO and PBS with different PBS fractions (0%, 20%, 40%, 60%, 80% and 95%) upon white-light irradiation (10 mW cm⁻²).

3.5 Cell Imaging and cell viability

Fig. S31 Fluorescence images of 4T1 cells stained with 10 µM CN-TPAQ-BP, ICN-TPAQ-BP, FCN-TPAQ-BP and ACN-TPAQ-BP for 6 h, respectively.

Fig. S32 CLSM images of 4T1 cells co-stained with MitoTracker Green (conc.:1 μM), incubation time: 0.5 h, λ_{ex} = 488 nm).

Fig. S33 Live/dead staining assay of 4T1 cells after various treatments of CN-TPAQ-BP.

Fig. S34 Live/dead staining assay of 4T1 cells after various treatments of ICN-TPAQ-BP.

Fig. S35 Live/dead staining assay of 4T1 cells after various treatments of ACN-TPAQ-BP.

Fig. S36 O₂⁻ generation of FCN-TPAQ-BP (10 µM) in 4T1 cells by using DHE (5 µM) as indicators, before and after exposure to white light (0.4 mW cm⁻²) irradiation.

Fig. S37 •OH generation of FCN-TPAQ-BP (10 µM) in 4T1 cells by using HPF (5 µM) as indicators, before and after exposure to white light (0.4 mW cm⁻²) irradiation.