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S1. Methodology 
 
S1.1. Synthesis and fabrication 
 
S1.1.1. Materials  
 
Silver nitrate (AgNO3), sodium citrate (Na3C6H5O7), uric acid (C5H4N4O3), creatinine (C4H7N3O),  
(3-aminopropyl)triethoxysilane (APTES) (C9H23NO3Si), acetic acid (CH3COOH), urea (CH₄N₂O), 
potassium chloride (KCl), citric acid (HOC(COOH)(CH2COOH)2), albumin from human serum, 
ethanol (C₂H₆O), and acetone (C3H6O) were all purchased from Sigma-Aldrich/Merck. Sodium 
fluoride (NaF), sodium phosphate dibasic (NaH2PO4), and rhodamine 6G (C28H31N2O3Cl) were 
purchased from ARCOS Organics. Sodium chloride (NaCl) was purchased from VWR Chemical. 
All chemicals were used as received, and Milli-Q water was used in all experiments. The 
fluorine doped tin oxide (FTO) coated glass slides were purchased from Sigma-Aldrich.  
 
S1.1.2. Synthesis of Ag NPs  
 
To synthesise the silver nanoparticles, a standard citrate reduction was used following the 
Lee and Meisel method.1 36 mg of silver nitrate (AgNO3) was dissolved in 200 ml H2O and 
brought to the boil in a round-bottomed flask whilst stirring. Once boiling, 4 ml of a 1% sodium 
citrate (Na3C6H5O7) solution was added to the silver nitrate solution dropwise. Heating and 
stirring were maintained for an hour. A colour change from colourless to milky green/grey 
was observed which indicted successful nanoparticle formation. Once cool, the flask was 
wrapped in foil to prevent light degradation of the colloid solution. 
 
S1.1.3. Preparation of APTES-coated FTO-coated glass 
 
To improve the adhesion of the Ag NP film, a (3-Aminopropyl)triethoxysilane (APTES) coating 
was applied to FTO-coated glass electrodes. The FTO-coated glass electrodes were washed 
with soapy water and then ultrasonically cleaned for 20 minutes using ethanol, acetone, and 
Milli-Q water consecutively. The electrodes were then dried using a gentle stream of nitrogen 
gas. A 95% ethanol-5% water solution was prepared, and the pH was adjusted to 4.5 – 5.5 
with approximately 10 μL 1 M acetic acid. APTES was added whilst stirring to give a 2% final 
concentration. The solution was then left for at least 5 minutes. The FTO-coated glass 
electrodes were dipped into the solution for 2 minutes and agitated gently. The electrodes 
were then dipped briefly in ethanol to remove excess APTES and left at room temperature 
overnight to cure the APTES layer. 
 
S1.1.4. Preparation of synthetic urine 
 
Synthetic urine (SU) which did not contain uric acid or creatinine was prepared according to 
the literature with modifications.2,3 For 200 ml of SU, 2 g of urea, 1.04 g of NaCl, 0.9 g of KCl, 
0.96 g of NaH2PO4, 0.08 g of citric acid, and 10 mg of albumin were dissolved in 200 ml of 
deionized water.  
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S1.2. Instrumentation 
 
S1.2.1. UV-visible (UV-Vis) spectroscopy  
 
UV-vis spectra of the colloidal Ag NP solution were acquired using a DH-mini Ocean Optics 
light source and a Flame S UV-vis ES Ocean Optics spectrometer. Milli-Q water was used to 
store the reference and background spectra. The colloidal Ag NP solutions were transferred 
into a 1 cm optical path length cuvette and placed in the spectrometer for measurement. A 
10 ms integration time was used, with 300 scans to average, and a boxcar width of 3. The 
absorbance spectra were collected in a wavelength range of 180 - 880 nm. 
 
S1.2.2. Transmission Electron Microscopy (TEM)  
 
Images of the Ag NPs were obtained using a JEOL JEM-2100 transmission electron microscope 

with an Orius SC200 1 camera at an accelerating voltage of 200 kV. A 5 L droplet of the sample 
NP solution was drop-cast onto a C-coated 300-mesh Cu grid, air-dried and then imaged. 
Particle sizing was performed using ImageJ software. 
 
S1.2.3. Scanning Electron Microscopy (SEM)  
 
Images of the Ag NP films were obtained using a JEOL JSM 6701 FEG-SEM at an accelerating 
voltage of 10 kV. The samples were coated with gold for 10 seconds using an Agar sputter 
coater.  
 
S1.3. Machine Learning  
 
S1.3.1. Dataset and pre-processing 
 
The data analysis was performed using Python and the Scikit-learn library was used for all 
machine learning.4 To pre-process the spectra for machine learning, they were first truncated 
to eliminate regions without significant Raman signals, removing measurements 500 cm-1 and 
above 1800 cm-1. After trimming the spectra, asymmetric least squares (ALS) baseline 
correction was applied.5 Then, standard normal variate normalisation was performed to give 
each spectrum a mean intensity of 0 and a standard deviation of 1.6 For the multilayer 
perceptron models, the analyte concentrations were also scaled via min-max normalization 
so that all of the values were transformed into the range [0,1].  
 
The dataset was randomly split into training (80%) and test (20%) datasets. Hyperparameter 
optimisation was performed on 5 K-fold splits of the training dataset. The performance of the 
model was assessed using the test dataset and the coefficient of determination, R2, was 
calculated to evaluate the accuracy of the predictions.7  
 
S1.3.2. Bayesian optimisation with Gaussian processes 
 
Bayesian optimisation is a strategy that can be used to efficiently determine the optimal 
parameters for a machine learning algorithm.8,9 In this work, Bayesian optimisation with 
Gaussian processes was used to find the optimal number of latent variables in the PLSR and 
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hidden layer architecture for the MLP. The  PLSR could have between 5 and 65 latent variables 
and the MLP could have between 1 and 3 layers. Each layer could have 4, 8, 16, 32, 64 or 128 
nodes. This results in 28,080 possible options. During the optimisation, a possible PLSR-MLP 
architecture was selected from these options. The performance of this PLSR-MLP model was 
then quantified by calculating the R2 from 5 K-fold splits of the training dataset.10 As the 
optimisation progressed, the selection started to converge. After 150 selections, the 
architecture that resulted in the highest R2 was returned and this was used to build the final 
PLSR-MLP model. 
 

 

Fig. S1: TEM images of silver nanoparticles. 

 

 
Fig. S2: Raman spectrum of uric acid powder.  
 

a b

c d
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Fig. S3: Raman spectrum of creatinine powder.  

 

Fig. S4: E-SERS spectra of 0.5 mM UA with 0.1 M NaF as the supporting electrolyte. The applied 
potential was stepped from 0 to 0.5 V and from 0 to -0.8 V in 100 mV increments. The 
characteristic UA peaks are indicated with a *. The spectra plotted are an average of 3 spectra 
recorded over 5 minutes (with spectra in the first 75 seconds removed to allow for 
equilibration). (RE: Ag/AgCl; WE: Ag NPs on FTO; CE: platinum plate). 

 

+

-
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Fig. S5: E-SERS spectra of 0.5 mM CRN(aq). The applied potential was stepped from 0 to 0.5 V 
and from 0 to -0.8 V in 100 mV increments. The characteristic CRN peak is indicated with an 
x. The spectra plotted are an average of 3 spectra recorded over 5 minutes (with spectra in 
the first 75 seconds removed to allow for equilibration). (RE: Ag/AgCl; WE: Ag NPs on FTO; CE: 
platinum plate; supporting electrolyte: 0.1 M NaF). 

 
Fig. S6: The standard deviation of the characteristic uric acid peak at 636 cm-1 as a percentage 
of the mean peak height for the original and R6G normalised spectra. The standard deviation 
is calculated for 3 Ag NP/FTO electrodes which were submerged in a 0.1 mM UA + 0.01 mM 
R6G + 0.1 M NaF (aq) solution. (RE: Ag/AgCl; WE: Ag NPs on FTO; CE: Platinum plate). 
 

+

-
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Fig. S7: The height of the characteristic uric acid peak at 636 cm-1 is plotted against the applied 
potential for multiple E-SERS scans of an aqueous solution containing 0.5 mM UA and 0.1 M 
NaF. The colour of the marker indicates the number of days since the Ag NP/FTO substrate 
was fabricated. A different substrate was used for each scan, and this was the first scan for 
each substrate. In each scan, the applied potential was stepped in the cathodic direction from 
0 V to -0.6 V in 100 mV increments The reduction in the peak height with ageing is attributed 
to oxidation of the silver. (RE: Ag/AgCl; WE: Ag NPs on FTO; CE: platinum plate). 

 

 
Fig. S8: E-SERS spectra of a solution containing 10 M R6G and 0.1 M NaF. The characteristic 
peak at 1362 cm-1 used for normalisation is indicated by a *. The applied potential was stepped 
in the anodic direction from 0 V to 0.4 V and then in the cathodic direction from -0.2 V to -0.8 
V in 0.2 V increments. (RE: Ag/AgCl; WE: Ag NPs on FTO; CE: Platinum plate). 
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Fig. S9: The height of the characteristic R6G peak at 1362 cm-1 plotted against applied 

potential for a solution containing 10 M R6G and 0.1 M NaF. (RE: Ag/AgCl; WE: Ag NPs on 
FTO; CE: Platinum plate). 
 

 
Fig. S10: E-SERS spectra of a solution containing 0.05 mM UA, 0.1 mM CRN, 10 M R6G and 
0.1 M NaF. The characteristic R6G, uric acid, and creatinine peaks are indicated by a +, a *, 
and a x respectively. The applied potential was stepped in the anodic direction from 0 V to 0.4 
V and then in the cathodic direction from -0.1 V to -0.8 V in 0.1 V increments. (RE: Ag/AgCl; 
WE: Ag NPs on FTO; CE: Platinum plate). 
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Fig. S11: (a) The R6G normalised peak height at 1138 cm-1 plotted against UA concentration 
for the spectra recorded at -0.8V. A linear relationship is fitted between UA concentration and 

the peak height for concentrations from 1 M to 100 M (R2 = 0.988) and plotted on a log x-
axis. (b) The R6G normalised peak height at 684 cm-1 plotted against CRN concentration for 
the spectra recorded at 0.4V. A linear relationship is fitted between log(CRN concentration) 

and the peak height for concentrations from 1 M to 1000 M (R2 = 0.902) and plotted on a 
log x-axis. (RE: Ag/AgCl; WE: Ag NPs on FTO; CE: platinum plate; supporting electrolyte: 0.1 M 
NaF). 
 

  
 
Fig. S12: (a) The R6G normalised peak height at 1138 cm-1 plotted against UA concentration 
for the spectra recorded at -0.8V. A linear relationship is fitted between UA concentration and 

the peak height for concentrations from 1 M to 100 M (R2 = 0.988). (b) The R6G normalised 
peak height at 1138 cm-1 plotted against UA concentration for the spectra recorded at -0.8 V 

for a solution containing 20 M CRN. A linear relationship is fitted between UA concentration 

and the peak height for concentrations from 1 M to 100 M (R2 = 0.987). (RE: Ag/AgCl; WE: 
Ag NPs on FTO; CE: platinum plate; supporting electrolyte: 0.1 M NaF). 
 
  

a b

a b
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Table S1: Detection of uric acid by SERS or E-SERS reported in the literature. 

 

Method Material Limit of 

detection (M) 

Linear range 

(M) 

Reference 
 

SERS Ag NPs 110 0 - 3500 [2] 

SERS Ag NPs 5 5 - 1000 [11] 

SERS Ag NPs 1.7 5 - 1000 [12] 

SERS Ag NPs/ZnO/Fe3O4 0.365 0.5 - 10 [13] 

SERS Au NP:CB7 nanoaggregates  0.2 0.2 - 10 [14] 

E-SERS Au nanopillars 0.001 0.01 - 100 [15] 

E-SERS Multi-layered Au NPs/Ag NPs 100 100 - 1000 [16] 

E-SERS Polycarbonate nanocone array 
decorated with Au NPs 

0.087 0.1 - 100 [17] 

E-SERS Ag NPs 0.13 1 - 100 This study 

 

Table S2: Detection of creatinine by SERS reported in the literature. 

Method Material Limit of 

detection (M) 

Linear range 

(M) 

Reference 
 

SERS Ag NPs 88.40 88.40 - 2475 [18] 

SERS Jaffe complex on Ag film 25 25 – 150 [19] 

SERS Boron nitride/Au 
nanocomposite 

10 10 - 200 [20] 

SERS Ag NPs 5 5 - 1000 [11] 

SERS Au NP-coated blu-ray DVD 1.77 1.77 – 8.84 [21] 

SERS Au NP:CB7 nanoaggregates 0.53 0.53 – 13.26 [22] 

SERS Nanoporous Au disk 0.1 0.1 - 100 [23] 

SERS Au dendritic nanostructure  0.97 17.7 - 2829 [24] 

SERS Polyelectrolyte multilayers over 
Au film 

0.29 1 - 1000 [25] 

E-SERS Ag NPs 0.35 1 - 1000 This study 
 

Table S3: Comparison of the prediction accuracies (R2s) and root mean square errors of 

prediction (RMSEPs) of the different machine learning algorithms based on the full dataset 

(2348 spectra): partial least squares regression (PLSR), multilayer perceptron (MLP), and the 

two-step PLSR-MLP model. 

Model UA prediction 
accuracy (R2) 

CRN prediction 
accuracy (R2) 

UA RMSEP  

(M) 

CRN RMSEP 

(M) 

PLSR 0.81 0.62 12.82 170.68 

MLP 0.83 0.66 12.39 163.72 

PLSR-MLP 0.96 0.91 5.93 84.7 

 



 12 

 
Fig. S13:  A comparison of the actual concentrations and the predicted concentrations for the 
two-step PLSR-ANN model which was trained and tested using only the spectra recorded at 
0V. The dotted y=x line represents perfect agreement between the actual and predicted 
concentrations.  
 

 
Fig. S14: E-SERS spectra of a solution containing 20  UA, 1000 M CRN, 10 M R6G, and 0.1M 
NaF in a 10% synthetic urine solution. The characteristic UA, CRN and urea peaks are indicated 
with a *, x, and + respectively. (RE: Ag/AgCl; WE: Ag NPs on FTO; CE: Platinum plate; 
supporting electrolyte: 0.1 M NaF).  
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