Supplementary Information (SI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2024

Appendix A Supplementary Information

Decellularization of caprine forestomach rumen tissue modified with silver nanowires as an antibacterial skin substitute scaffold in wound

care therapeutics

Athmana P A^a, Asna Jaleel K I^a, Sinduja Malarkodi Elangovan^b, Riza Paul^c, Naveen Subbaiyan^d, Parthiban Shanmugam^{c,e} Gopal

Shankar Krishnakumar^{a*}

^a Department of Bioscience and Engineering, National Institute of Technology, Calicut, Kerala, India.

^b Department of Biotechnology, Rajalakshmi Engineering College, Chennai, Tamil Nadu, India.

^c Advanced Materials and Devices Laboratory, PSG Institute of Advanced Studies, Peelamedu, Coimbatore, Tamil Nadu, India

^d Department of Mechanical Engineering, Saveetha School of Engineering Saveetha Institute Of Medical And Technical Sciences, Chennai, Tamil Nadu, India.

^e Department of Physics, Centre for Research and Development, KPR Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India

Corresponding Author

Dr. Gopal Shankar Krishnakumar Assistant Professor Grade I, Department of Bioscience and Engineering

National Institute of Technology, Calicut, Kerala, India

Email: gopalshankar.k@gmail.com, gopalshankar@nitc.ac.in

Figure S1: (A-E): Contact angle measurements of CFNC/AgNWs scaffolds, (F): Total porosity of CFNC/AgNWs scaffolds, (G): W_R (%) of CFNC/AgNWs scaffolds as a function of time, (H): Biodegradation of CFNC/AgNWs scaffolds as a function of time. Asterisk indicates level of significance for (***p ≤ 0.001)

Figure S2: Protein adsorption in CFNC/AgNWs scaffolds. Asterisk indicates level of significance for (**** $p \le 0.0001$) and (*** $p \le 0.001$).

Figure S3: Elemental mapping analysis showing the presence of different elements present in CFNC/AgNWs_5 scaffold group.

Figure S4: Surface roughness and root mean square roughness of CFNC/AgNWs scaffolds.

Elements CFNC CFNC/AgNWs_0.5 CFNC/AgNWs_1 CFNC/AgNWs_3 CFNC/AgNWs_5

C K (%)	66.39	69.81	69.57	68.54	67.41
N K (%)	31.94	28.31	28.67	28.98	28.76
OK(%)	0.51	0.03	0.09	0.31	0.44
Si K (%)	0.12	0.07	0.11	0.11	0.26
P K (%)	0.18	0.22	0.19	0.27	0.41
Ca K (%)	0.40	0.70	0.48	0.95	1.40
Mo L (%)	0.43	0.69	0.71	0.64	0.72
Ag L (%)	0.03	0.16	0.17	0.21	0.61

 Table S1: EDX element composition of different elements in CFNC/AgNWs scaffolds.