SUPPORTING INFORMATION (S.I.)

Bioactive Hydrogels based on Lysine Dendrigrafts as Crosslinkers: Tailoring Elastic Properties to Influence hMSC Osteogenic Differentiation

Michele Valeo,^a Sébastien Marie,^b Murielle Rémy,^a Tiphaine Menguy,^b Cédric Le Coz,^c Michael Molinari,^a Cécile Feuillie,^a Fabien Granier,^b and Marie-Christine Durrieu*^a.

a Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac.

b FGHI, Montarnaud.

^cUniversité de Bordeaux, CNRS, Bordeaux INP, LCPO, ENSMAC, Pessac.

Figures

Figure S1: **FT-ATR spectra of lyophilized DGL G5-PEG hydrogels before surface functionalization, showing the functional groups region (2300 – 1000 cm-1).** The central portion of the spectrum is occupied by the amide I and II bands at 1648 cm⁻¹ and 1560 cm⁻¹, respectively. At the right end, the shouldered peak at 1100 cm⁻¹ is the C-O stretching of the dicarboxylic-PEG, not showing differences between the 50 and 65mM gels. Of note, a broad and weak signal is present at ≈2100 cm⁻¹, indicating carbodiimide traces. Interestingly, the small peak at 1730 cm⁻¹, attributed to the stretching of uncrosslinked COOH groups in the PEG, indicates the quantitative reaction of the dicarboxylic acid-PEG chains with the terminal amines of DGL G5.

Figure S2: **Time sweeps of** *in situ-***polymerized DGL G5-PEG hydrogels.** Hydrogels of the same dicarboxylic acid-PEG content 65mM-5) show symmetric curves, indicating similar crosslinking rates.

Figure S3: frequency sweeps of selected DGL G5-PEG hydrogels before swelling (1% shear strain). The storage modulus (Gʹ) is reported in circles and the loss modulus (Gʺ) in triangles. Storage modulus at 1Hz was 18,45±1,72 (65mM-3), 46.33±3.28 (50mM-5), 66.73±0.898 (65mM-4) and 98.83±4.23 (65mM-5).

Figure S4: swelling kinetics of selected DGL G5-PEG gels. (A), fluid absorption capacity (FAC) expressed as fold increment of the dry hydrogel weight W_0 (taken as the 0 in t₀), in PBS at r.t. (t1 is the hydrogel weight after crosslinking and before swelling). Having polyelectrolyte character due to protonated amine groups at physiological pH, DGL G5-PEG hydrogels exhibited fast swelling at room temperature, reaching equilibrium in approximately 2h. (B), equilibrium fluid absorption capacity (FAC), indicating the g PBS absorbed by each g of dry polymer. At equilibrium, 65mM-3 gels absorbed approximately 20 times their initial dry weight (W_0) in PBS, 50mM-5 and 65mM-4 gels 15 times, and 65mM-5 gels 10 times. ONE-WAY ANOVA (with Tuckey's correction for multiple comparisons) analysis, with P<0.05 (*), P<0.01 (**), P<0.001 (***). Not significant = P > 0.05. All statistical tests are reported at the end of the Supplementary Information.

Figure S5: **stress-strain curves of non-functionalised, swollen DGL G5-PEG hydrogels.** Uniaxial strain was measured in non-confined compression up to 5% of the initial length.

Figure S6: paired comparison ofsurface E values obtained by AFM indentations with a colloidal (coll) or pyramidal (pyr) tip. Each point represents the averaged E value over a squared array of 400 μm² (20x20). At least five different regions were analysed per gel. No statistical difference was found in paired E values obtained with the colloidal or pyramidal tip geometry. Group comparisons of data obtained with the colloidal tip showed statistical significance only among non-nearby groups. N (gels) = 3, non-parametric analysis (Kruskal-Wallis test) with P < 0.05 (*), P < 0.01 (**), P < 0.001 (***). All statistical tests are reported at the end of the Supplementary Information.

Figure S7: paired comparison of surface E values measured with a pyramidal tip before and after (F) functionalisation with GRGDSPC and BMP-2 mimetic peptides. Each point represents the averaged E value over a squared array of 400 μm² (20x20). At least five different regions were analysed per gel. N (gels) = 3, One-way ANOVA (Tukey's correction for multiple comparisons) with P < 0.05 (*), P < 0.01 $(**)$, P < 0.001 $(**)$. Not significant = P > 0.05. All statistical tests are reported All statistical tests are reported at the end of the Supplementary Information.

Figure S8: surface topography (height sensor images) of DGL G5-PEG hydrogels after surface functionalization with peptides. Three representative images, measured over 400 µm² each, are shown per condition, reporting surfaces grafted with GRGDSPC-TAMRA+BMP-2 bp (left), BMP-2- TAMRA bp + GRGDSPC (middle) and GRGDSPC-TAMRA + BMP-2-TAMRA bp (right).

Figure S9: root mean square roughness (RMS) of selected DGL G5-PEG hydrogel surfaces after peptide grafting to the surface. Each point represents the averaged RMS value over a squared array of 400 μm² (20x20). At least three different regions were analysed per gel. N (gels) = 3, One-way ANOVA (Tukey's correction for multiple comparisons) with P < 0.05 (*), P < 0.01 (**), P < 0.001 (***). Not significant = $P > 0.05$. All statistical tests are reported at the end of the Supplementary Information.

Figure S10: surface functionalization strategy of DGL G5-PEG hydrogels after crosslinking. Cysteinecontaining peptides, the GRGDSPC (**A**) and BMP-2 bp (**B**), are covalently grafted using a maleimide-PEG-NHS spacer (**C**). This spacer is first reacted with the free α (not shown) and ε-amine groups available on DGL G5 surfaces via a nucleophilic substitution (eliminating N-hydroxysuccinimide, not shown) in 10mM phosphate buffered solution at pH 7.3 (1). Then, once hydrogel surfaces are activated by exposing maleimide units (**2**), the peptides are selectively conjugated at the C-ter (Cys) via a thiolmaleimide reaction in 10mM phosphate buffered solution at pH 7.3. Possibly, maleimide hydrolysis leads to ring opening but not peptide lost.

GRGDSPC-TAMRA + BMP-2 bp BMP-TAMRA bp + GRGDSPC

Figure S11: **3D-reconstruction of a Z-stack obtained in confocal microscopy of 50mM-5 DGL G5-PEG hydrogels**. It shows that the highest fluorescence intensity of TAMRA-tagged peptides is present at the hydrogel's top surface layers, over a gradient of about 50 microns. Pixel intensities were adjusted to avoid oversaturation of most intense layers (10x objective, 0.45 NA).

Figure S12: calibration curves for fluorescent peptides combinations. The curves were obtained in confocal microscopy for GRGDSPC-TAMRA peptides (yellow, **A**), BMP-2-TAMRA bp (red, **B**) and 1:1 GRGDSPC-TAMRA + BMP-2-TAMRA peptide mixtures (orange, **C**).

Figure S13: undirect cytotoxicity test of unfunctionalized DGL G5-PEG hydrogels. hMSC P5 metabolic activity (reduction potential) measured photometrically using an XTT test (O.D.₄₉₀ – O.D.₆₉₀), normalized to cell activity in the control (DMEM+10%FBS, 100% of activity). N=6 wells per conditions, three readings per well. ONE-WAY ANOVA (uncorrected Fisher's LSD) analysis, with P<0.05 (*), P<0.01 (**), P<0.001 (***). Not significant = P > 0.05. All statistical tests are reported All statistical tests are reported at the end of the Supplementary Information.

Figure S14, A: phase contrast images of hMSCs cultured over DGL G5-PEG hydrogels (65mM-3 condition) at different culture time points (1 day after seeding, 4 days after seeding, 7 days after seeding and 10 days after seeding) in osteogenic differentiation medium. On day 14, cells were fixed.

Figure S14, B: phase contrast images of hMSCs cultured over DGL G5-PEG hydrogels (50mM-5 condition) at different culture time points (1 day after seeding, 4 days after seeding, 7 days after seeding and 10 days after seeding) in osteogenic differentiation medium. On day 14, cells were fixed.

Figure S14, C: phase contrast images of hMSCs cultured over DGL G5-PEG hydrogels (65mM-4 condition) at different culture time points (1 day after seeding, 4 days after seeding, 7 days after seeding and 10 days after seeding) in osteogenic differentiation medium. On day 14, cells were fixed. 65mM-5

Figure S14, D: phase contrast images of hMSCs cultured over DGL G5-PEG hydrogels (65mM-5 condition) at different culture time points (1 day after seeding, 4 days after seeding, 7 days after seeding and 10 days after seeding) in osteogenic differentiation medium. On day 14, cells were fixed.

Figure S14, E: phase contrast images of hMSCs cultured over glass controls at different culture time points (1 day after seeding, 4 days after seeding, 7 days after seeding and 10 days after seeding) in osteogenic differentiation medium. On day 14, cells were fixed.

Table S1: formulations of DGL G5-PEG hydrogels. The concentration of DGL G5 in the final solution (in black in the table) was calculated according to the final concentration of dicarboxylic acid-PEG (50 mM or 65 mM) and the desired excess of amines available to react per carboxylic group (NH₂/COOH molar ratio, from 3 to 6).

Table S2: ONE-WAY ANOVA (Tuckey's correction for multiple comparisons) analysis of the fluid absorption capacity (FAC, g PBS/g dry polymer). Calculations for equilibrium swelling experiments conducted at r.t. ONE-WAY ANOVA (with Tuckey's correction for multiple comparisons) analysis, with P<0.05 (*), P<0.01 (**), P<0.001 (***). Not significant = P > 0.05.

Table S3: ONE-WAY ANOVA (Tuckey's correction for multiple comparisons) analysis of Young's modulus calculated from rheometry and compression measurements. P<0.05 (*), P<0.01 (**), P<0.001 (***). Not significant = P > 0.05.

Table S4: **AFM data**. E values obtained from each hydrogel surface region, extracted from matrices of 68 (8x8) force curves measured over a squared array of 20x20 μm. E values from each surface region were averaged to obtain one mean value - so that Young's modulus of each sample (n) was represented by at least 5 mean values and each hydrogel condition by 15 mean values (n = 3). The distribution of mean values obtained with the colloidal tip is not normal, so data were statistically analysed using non-parametric tests (Kruskal-Wallis test with Dunn's correction for multiple comparisons).

Table S5: ONE-WAY ANOVA (Tuckey's correction for multiple comparisons) analysis of fluorescence intensity measurements of surface-grafted peptides reported in Fig. 4. P<0.05 (*), P<0.01 (**), P<0.001 (***). Not significant = $P > 0.05$.

Table S6: Kruskal-Wallis test (with Dunn's correction for multiple comparisons) of cell spread area and aspect ratio 6h after seeding. Data were calculated from fluorescence intensity measurements after 6h of culture in DMEM (without Red Phenol) on selected DGL G5-PEG hydrogel surfaces and in DMEM + 10%FBS for glass controls. P<0.05 (*), P<0.01 (**), P<0.001 (***). Not significant = P > 0.05.

Table S7: Kruskal-Wallis test (with Dunn's correction for multiple comparisons) of cell spread area, aspect ratio, cell counts and osteopontin expression after two weeks of culture in OM. Data were calculated according to fluorescence intensity measurements. P<0.05 (*), P<0.01 (***), P<0.001 (***). Not significant = $P > 0.05$.