Supplementary Information (SI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2024

Electronic Supporting Information

Intercellular Lipids-Cored, Hectorite Nanoplatelets-Armored Pickering Emulsions with Enhanced Transdermal Delivery and Epidermal Hydration

Boryeong Lee ^a, Lakshmishri Prabakaran ^a, Minkyoung Jang ^a, Song Hua Xuan ^b, Kyounghee Shin ^b, Sung Ho Lee ^{b,*}, Jin Woong Kim ^{a,*}

^a School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
^b Sunjin Beauty Science Co., Seoul 08588, Republic of Korea

*Corresponding authors: Dr. Sung Ho Lee (E-mail: sungholee@sunjinbs.com); Prof. Jin Woong Kim (E-mail: jinwoongkim@skku.edu)

Supporting data

Figure S1. Schematic illustration of the preparation process and key components of intercellular lipidbased Pickering emulsions (ILPEs). (a) The high-pressure homogenization process used to exfoliate hectorite nanoplatelets (HNPs), followed by their stabilization with a cationic surfactant, dimethyl dehydrogenated tallow ammonium chloride (2M2HT), through electrostatic interaction (Ref 1). Chemical structures of the intercellular lipids used: (b) Ceramide (PC-104), (c) Phytosterol, and (d) Stearic acid.

Figure S2. Optical microscopic images of intercellular lipid-based Pickering emulsions (ILPEs) at different ratios of IL to HNPs. (a) IL-to-HNPs ratio of 20:1 (w/w), (b) IL-to-HNPs ratio of 30:1 (w/w) and (c) IL-to-HNPs ratio of 40:1 (w/w) to avoid experimental errors due to concentration deviations. Scale bar shows 30 μ m.

Figure S3. Optical microscopic images showing stable spherical micro-sized droplets upon preparation of ILPEs stabilized by (a) hectorite nanoplatelets (ILPE_{HNP}) and (b) stearic acid (ILPE_{SA}). Scale bar shows 20 μ m.

Figure S4. Dispersion stability of ILPEs upon preparation and after one month of storage. (a) ILPE_{HNP} (stabilized by hectorite nanoplatelets), (b) ILPE_{SA} (stabilized by stearic acid), and (c) ILPE_{HNP-SA} (stabilized by hectorite nanoplatelets and stearic acid).

Figure S5. Optical microscopy images of emulsion droplets (ILPEs) and polarized microscopy images of IL dispersed in different oils: (a) Caprylic/capric oil, (b) Olive oil, (c) Mineral oil, and (d) Silicone oil. The top row shows optical microscopy images with a scale bar of 30 μ m, and the bottom row shows polarized microscopy images with a scale bar of 20 μ m.

Figure S6. Aerial view of confocal laser scanning microscopy (CLSM) images showing the penetration performance of ILPE-treated porcine skin. (a) $ILPE_{SA}$, and (b) $ILPE_{HNP-SA}$.

References

 Cho, Y. S.; Lee, S. H.; Seo, H. M.; Shin, K.; Kang, M. H.; Lee, M.; Park, J.; Kim, J. W. Structuring Pickering Emulsion Interfaces with Bilayered Coacervates of Cellulose Nanofibers and Hectorite Nanoplatelets. *Langmuir* 2021, *37* (13), 3828–3835. https://doi.org/10.1021/acs.langmuir.0c03082.