Electronic Supporting Information

Structural isomerism engineering regulates molecular AIE behavior and application in visualizing endogenous hydrogen sulfide

Yaxi Li^{a,1}, Yong-Xiang Wang^{b,1}, Dujuan Liu^a, Chen-Chieh Ni^b,

Jianming Ni,^a and Jen-Shyang Ni^{b,*}

^a Department of Radiology, Jiangnan University Medical Center (JUMC), Wuxi 214002, China

^b Department of Chemical and Materials Engineering, Photo-sensitive Material Advanced Research and Technology Center (Photo-SMART), National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan

¹ These authors contributed equally to this work.

Scheme S1. The chemical structures of coumarin-based materials.

Scheme S2. The synthesis route of coumarin-based materials.

Figure S1. The PL spectra of DMSO solvent. Excitation wavelength: 400 nm; Slit: 5 nm.

Figure S2. The PL spectra of CMR-o-Py in DMSO at the concentrations of 1 and 10 μ M, respectively. Excitation wavelength: 400 nm; Slit: 5 nm.

Figure S3. The DLS spectra of CMR-o-Py in DMSO at the concentrations of 1 and 10 μ M, respectively.

Figure S4. UV-vis absorption spectra of (A) CMR-Ph, (B) CMR-*o*-Py, (C) CMR-*m*-Py, and (D) CMR-*p*-Py in DMSO/PBS mixture solution (100 μ M) with different PBS fractions (*f*_{PBS}).

Figure S5. PL spectra of CMR-*m*-Py in DMSO/PBS mixture solution with different PBS fractions (f_{PBS}) at a concentration of 100 μ M. Excitation wavelength: 405 nm; excitation slit: 1 nm; emission slit: 5 nm.

Figure S6. PL spectra of CMR-*p*-Py in DMSO/PBS mixture solution with different f_{PBS} (100 μ M). Excitation wavelength: 405 nm; excitation slit: 1 nm; emission slit: 5 nm.

Figure S7. PL spectra of CMR-Ph in DMSO/PBS mixture solution with different f_{PBS} (100 μ M). Excitation wavelength: 405 nm; excitation slit: 1 nm; emission slit: 5 nm.

Figure S8. The DLS analysis of CMR-o-Py nanoaggregates in 90 vol% PBS solution (100 μ M) after 1 and 10 min sitting, respectively.

Figure S9. The dipole moment of CMR-*o*-Py, CMR-*m*-Py, and CMR-*p*-Py, respectively, calculated with TD-DFT using B3LYP functional with a 6-31G(d) basis set. μ and μ^* are dipole moments of the ground and excited states, respectively. $\Delta\mu$ is the difference value between μ and μ^* .

Figure S10. The frontier molecular orbitals and their relative energy levels of CMR-*o*-Py in the ground and excited states. GS: ground state. ES: excited state.

Figure S11. The frontier molecular orbitals and their relative energy levels of CMR-*m*-Py in the ground and excited states. GS: ground state. ES: excited state.

Figure S12. The frontier molecular orbitals and their relative energy levels of CMR-*p*-Py in the ground and excited states. GS: ground state. ES: excited state.

Figure S13. The frontier molecular orbitals and their relative energy levels of CMR-Ph in the ground and excited states. GS: ground state. ES: excited state.

Figure S14. PL spectra of CMR-*o*-Py nanoaggregates in DMSO/PBS (1/9, v/v; pH = 7.4) mixture solutions (100 μ M) with different sulfide substances, amino acids, anions, and metal ions (1 mM). Excitation wavelength: 405 nm; excitation slit: 1 nm; emission slit: 5 nm.

Figure S15. UV-vis absorption spectra of CMR-*o*-Py nanoaggregates in DMSO/PBS (1/9, v/v; pH = 7.4) mixture solutions (100 μ M) with different sulfide substances.

Figure S16. (A) DLS analysis of CMR-*o*-Py nanoaggregates in DMSO/PBS (4/6, v/v; pH = 7.4) mixture solutions (100 μ M) and (B) their PL spectra without and with H₂S (1 mM).

Figure S17. PL spectra of CMR-*o*-Py nanoaggregates (100 μ M in DMSO/PBS, 1/9, v/v; pH = 7.4) in different pH values (A) without and (B) with H₂S (1 mM). Excitation wavelength: 405 nm; excitation slit: 1 nm; emission slit: 5 nm.

Figure S18. Photographs of CMR-*o*-Py nanoaggregates-adsorbed filter papers sensing H₂S gas during different times.

Figure S19. Photographs of CMR-o-Py nanoaggregates-adsorbed filter papers sensing different H₂S concentrations.

Figure S20. Cell viability of CMR-*o*-Py nanoaggregates with different concentrations.

Molecules	States	Configurations	$E(\mathrm{eV})$	λ (nm)	$f_{ m os}$
CMR-Ph	S_{01}	$H-1 \to L(3\%), H \to L(91\%),$	3.26	379.78	0.16
		$H \rightarrow L+1 (5\%)$			
	S_{02}	$\mathrm{H-1} \rightarrow \mathrm{L}~(7\%), \mathrm{H-1} \rightarrow \mathrm{L+1}~(5\%),$	3.68	337.32	0.52
		$\mathrm{H} \rightarrow \mathrm{L} \ (8\%), \mathrm{H} \rightarrow \mathrm{L}{+1} \ (79\%)$			
	S_{03}	$\text{H-1} \rightarrow \text{L} \text{ (74\%), H-1} \rightarrow \text{L+1 (4\%),}$	3.96	313.05	0.42
		$\mathrm{H} \rightarrow \mathrm{L+1} \; (14\%), \mathrm{H} \rightarrow \mathrm{L+3} \; (4\%)$			
CMR-o-Py	S_{01}	$\mathrm{H-1} \rightarrow \mathrm{L}~(7\%), \mathrm{H} \rightarrow \mathrm{L}~(85\%),$	3.43	361.98	0.18
		$\mathrm{H} \rightarrow \mathrm{L}{+1} \; (7\%)$			
	S ₀₂	H−1 → L (22%), H−1 → L+1 (7%),	3.74	331.69	0.35
		$\mathrm{H} \rightarrow \mathrm{L} \ (13\%), \mathrm{H} \rightarrow \mathrm{L}{+}1 \ (55\%)$			
	S ₀₃	$\mathrm{H}1 \rightarrow \mathrm{L} \ (59\%), \ \mathrm{H} \rightarrow \mathrm{L}\text{+-}1 \ (34\%),$	3.99	310.49	0.65
		$\mathrm{H} \rightarrow \mathrm{L+3}~(3\%)$			
CMR- <i>m</i> -Py	S_{01}	$\mathrm{H-1} \rightarrow \mathrm{L}\ (6\%), \mathrm{H} \rightarrow \mathrm{L}\ (87\%),$	3.38	367.02	0.20
		$H \rightarrow L+1 (6\%)$			
	S_{02}	$\mathrm{H-1} \rightarrow \mathrm{L}(18\%),\mathrm{H-1} \rightarrow \mathrm{L+1}(6\%),$	3.69	335.91	0.38
		$\mathrm{H} \rightarrow \mathrm{L} \ (11\%), \mathrm{H} \rightarrow \mathrm{L}{+1} \ (63\%)$			
	S ₀₃	$\mathrm{H-1} \rightarrow \mathrm{L} \ (64\%), \ \mathrm{H} \rightarrow \mathrm{L+1} \ (27\%),$	3.96	313.21	0.52
		$H \rightarrow L+3 (3\%)$			
CMR- <i>p</i> -Py	S_{01}	$\mathrm{H-1} \rightarrow \mathrm{L} \ (12\%), \ \mathrm{H} \rightarrow \mathrm{L} \ (78\%),$	3.52	352.19	0.21
		$H \rightarrow L+1 (8\%)$			
	S_{02}	$H-1 \rightarrow L (31\%), H-1 \rightarrow L+1 (6\%),$	3.73	332.16	0.24
		$\mathrm{H} \rightarrow \mathrm{L} \ (20\%), \mathrm{H} \rightarrow \mathrm{L}{+1} \ (41\%)$			
	S ₀₃	$\mathrm{H}1 \rightarrow \mathrm{L} \ (48\%), \ \mathrm{H} \rightarrow \mathrm{L}\text{+-}1 \ (47\%),$	4.02	308.56	0.72
		$H \rightarrow L+3 (2\%)$			

Table S1. Calculation data of coumarin-based AIEgens in S₀ state.

* Calculated with TD-DFT at the level of B3LYP/6-31G*. S_{01} , S_{01} , and S_{03} denoted the first, second, and third vertical transition from the S_0 state to the S_1 , S_2 , and S_3 , respectively, and f_{0s} denoted oscillator strength between the ground and excited states.

Molecules	Excited states	Configurations	<i>E</i> (eV)	λ (nm)	$f_{ m os}$
CMR-Ph	S ₁₀	$\mathrm{H} \rightarrow \mathrm{L} \ (98\%)$	2.44	507.84	0.07
CMR-o-Py	S ₁₀	$\mathrm{H} \rightarrow \mathrm{L} \ (96\%), \mathrm{H} \rightarrow \mathrm{L}{+1} \ (2\%)$	2.60	476.07	0.08
CMR- <i>m</i> -Py	S ₁₀	$H \rightarrow L (97\%)$	2.56	483.92	0.08
CMR- <i>p</i> -Py	S_{10}	$\mathrm{H} \rightarrow \mathrm{L} \ (96\%), \mathrm{H} \rightarrow \mathrm{L}{+1} \ (2\%)$	2.67	464.37	0.08

Table S2. Calculated data of coumarin-based AIEgens in S1 state.

* Calculated with TD-DFT at the level of B3LYP/6-31G*. S_{10} denoted the first vertical radiation from the S_1 state to the S_0 state, and f_{0s} denoted oscillator strength between the ground and excited states.

Table S3. Molecular dipole moments of coumarin-based AIEgens in S_0 and S_1 states.

Molecules	States	X (Debye)	Y (Debye)	Z (Debye)	Total (Debye)
CMR-Ph	\mathbf{S}_0	-0.1818	-2.0241	-0.0433	2.0327
	S_1	-0.1818	-2.0241	-0.0433	2.0327
CMR-o-Py	\mathbf{S}_0	-0.1226	-3.8467	0.0002	3.8487
	S_1	-5.5749	-1.5321	-0.0001	5.7816
CMR- <i>m</i> -Py	\mathbf{S}_0	-2.3291	-3.6224	0.0001	4.3066
	S_1	-4.4721	-3.5658	0	5.7197
CMR- <i>p</i> -Py	\mathbf{S}_0	-3.5393	-1.5697	0.0001	3.8717
	S_1	-2.104	-3.59	0	4.1611

* Calculated with TD-DFT as the level of B3LYP/6-31G*.

¹³C NMR spectrum of CMR-*o*-Py.

¹H NMR spectrum of CMR-*m*-Py.

¹³C NMR spectrum of CMR-*p*-Py.

¹H NMR spectrum of CMR-Ph.

HRMS spectrum of CMR-Ph.