Supporting Information for

Near-infrared superoxide generator based on a biocompatible indenebearing heptamethine cyanine dye

Nikita Bel'ko, Anna Mal'tanova, Anastasiya Bahdanava, Anatol Lugovski, Sviatlana Fatykhava, Polina Shabunya, Adam Smaliakou, Sergey Poznyak, Tatsiana Kulahava, Michael Samtsov

Contents

S1 Experimental	2
S1.1 Superoxide detection with Mito-HE	2
S1.2 The demonstration of oxidative stress in vitro	2
S2 The measurement of the photodegradation quantum yields	3
S3 Mass spectrometry data	4
S4 Absorption and fluorescence spectra for dye 1 inside Vero E6 cells	4

S1 Experimental

Fig. S1. The oxidation mechanism of Mito-HE.

S1.2 The demonstration of oxidative stress in vitro

Photoinduced processes in cells loaded with dye 1 were studied with H₂DCF as a fluorogenic probe (Fig. S2). Cells were incubated with the probe in the form of H₂DCF-DA that readily crosses cytoplasmic membrane. After passing to the cytoplasm, H₂DCF-DA is cleaved by esterases yielding H₂DCF. Non-fluorescent H₂DCF can be oxidized to fluorescent DCF under certain conditions. In particular, Fenton-type reactions between H₂O₂ and redox-active metal ions (primarily Fe²⁺) result in the production of •OH that efficiently oxidizes H₂DCF to DCF. Alternatively, H₂DCF can be oxidized by cytochrome *c*. Redox-active metal ions and cytochrome *c* are mostly located within lysosomes and mitochondria, respectively. Since hydrophilic H₂DCF cannot cross membranes, cytosolic DCF-induced fluorescence can be observed only after the release of redox-active metal ions from lysosomes and/or cytochrome *c* from mitochondria¹. These processes are a result of lysosomal and mitochondrial membrane permeabilization and can be linked to different forms of stress and cell death².

Fig. S2. The transformations of H₂DCF-DA upon cellular uptake and oxidation.

 ¹ a. Karlsson, M.; Kurz, T.; Brunk, U. T.; Nilsson, S. E.; Frennesson, C. I. What does the commonly used DCF test for oxidative stress really show? *Biochem. J.* 2010, 428, 183–190; b. Wardman, P. Use of the dichlorofluorescein assay to measure "reactive oxygen species". *Radiat. Res.* 2008, 170, 406–407.
² a. Wang, F.; Gómez-Sintes, R.; Boya, P. Lysosomal membrane permeabilization and cell death. *Traffic* 2018, 19, 918–931; b. Kroemer, G.; Galluzzi, L.; Brenner, K. Mitochondrial membrane permeabilization in cell death. *Physiol. Rev.* 2007, 87, 99–163.

Fig. S3. Absorbance in the peak of the absorption spectrum as a function of irradiation time for 5 μ M solutions of dyes **1–5** in MeCN/H₂O (v/v = 1:1). The samples were exposed to 750 nm laser radiation with an irradiance of 130 mW cm⁻². The measurements for each dye were repeated four times.

Fig. S4. Mass spectrum for 2-OH-Mito-E⁺ (m/z calculated 323.7, found 323.8) photogenerated in a 5 μ M solution of dye **1** in the presence of 5 μ M Mito-HE in phosphate-buffered saline (pH 7.0, 50 mM) under 750 nm irradiation for 4 min (130 mW cm⁻² irradiance, 31 mW cm⁻² light dose). Mass spectrometry was performed after HPLC separation as described in the main text (Section 2.5). The presented mass spectrum corresponds to a retention time of 3.35 min in HPLC. The additional peaks in the spectrum can be assigned to the photooxidation products of dye **1** and impurities from the HPLC column.

S4 Absorption and fluorescence spectra for dye 1 inside Vero E6 cells

Fig. S5. The absorption spectrum (A) and fluorescence spectrum excited at 650 nm (B) for Vero E6 cells incubated with $10 \,\mu$ M dye 1 for 30 min, washed, and resuspended in HEPES buffer. This excitation wavelength was chosen to minimize the impact of excitation light scattering on the shape of the fluorescence spectrum.