Supporting Information for

Near-infrared superoxide generator based on a biocompatible indenebearing heptamethine cyanine dye

Nikita Bel'ko, Anna Mal'tanova, Anastasiya Bahdanava, Anatol Lugovski, Sviatlana Fatykhava, Polina Shabunya, Adam Smaliakou, Sergey Poznyak, Tatsiana Kulahava, Michael Samtsov

Contents

S1 Experimental

Fig. S1. The oxidation mechanism of Mito-HE.

S1.2 The demonstration of oxidative stress in vitro

Photoinduced processes in cells loaded with dye **1** were studied with H2DCF as a fluorogenic probe (Fig. S2). Cells were incubated with the probe in the form of H2DCF-DA that readily crosses cytoplasmic membrane. After passing to the cytoplasm, H2DCF-DA is cleaved by esterases yielding H2DCF. Non-fluorescent H2DCF can be oxidized to fluorescent DCF under certain conditions. In particular, Fenton-type reactions between H_2O_2 and redox-active metal ions (primarily Fe^{2+}) result in the production of •OH that efficiently oxidizes H2DCF to DCF. Alternatively, H2DCF can be oxidized by cytochrome *c*. Redox-active metal ions and cytochrome *c* are mostly located within lysosomes and mitochondria, respectively. Since hydrophilic H2DCF cannot cross membranes, cytosolic DCF-induced fluorescence can be observed only after the release of redox-active metal ions from lysosomes and/or cytochrome c from mitochondria^{[1](#page-1-3)}. These processes are a result of lysosomal and mitochondrial membrane permeabilization and can be linked to different forms of stress and cell death²[.](#page-1-4)

Fig. S2. The transformations of H2DCF-DA upon cellular uptake and oxidation.

¹ *a*. Karlsson, M.; Kurz, T.; Brunk, U. T.; Nilsson, S. E.; Frennesson, C. I. What does the commonly used DCF test for oxidative stress really show? *Biochem. J*. **2010**, 428, 183–190; *b*. Wardman, P. Use of the dichlorofluorescein assay to measure "reactive oxygen species". *Radiat. Res*. **2008**, 170, 406–407. ² *a*. Wang, F.; Gómez‐Sintes, R.; Boya, P. Lysosomal membrane permeabilization and cell death. *Traffic* **2018**, 19, 918–931; *b*. Kroemer, G.; Galluzzi, L.; Brenner, K. Mitochondrial membrane permeabilization in cell death. *Physiol. Rev*. **2007**, 87, 99–163.

Fig. S3. Absorbance in the peak of the absorption spectrum as a function of irradiation time for 5 µM solutions of dyes 1-5 in MeCN/H₂O ($v/v = 1:1$). The samples were exposed to 750 nm laser radiation with an irradiance of 130 mW cm⁻². The measurements for each dye were repeated four times.

Fig. S4. Mass spectrum for 2-OH-Mito-E⁺ (m/z calculated 323.7, found 323.8) photogenerated in a 5 μ M solution of dye **1** in the presence of 5 μM Mito-HE in phosphate-buffered saline (pH 7.0, 50 mM) under 750 nm irradiation for 4 min (130 mW cm⁻² irradiance, 31 mW cm⁻² light dose). Mass spectrometry was performed after HPLC separation as described in the main text (Section 2.5). The presented mass spectrum corresponds to a retention time of 3.35 min in HPLC. The additional peaks in the spectrum can be assigned to the photooxidation products of dye **1** and impurities from the HPLC column.

S4 Absorption and fluorescence spectra for dye 1 inside Vero E6 cells

Fig. S5. The absorption spectrum (A) and fluorescence spectrum excited at 650 nm (B) for Vero E6 cells incubated with 10 µM dye **1** for 30 min, washed, and resuspended in HEPES buffer. This excitation wavelength was chosen to minimize the impact of excitation light scattering on the shape of the fluorescence spectrum.