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Materials: Sodium hydroxide (NaOH, >96%), nickel nitrate (Ni(NO3)2, 99.9%), 

potassium chloride (KCl, >99.5%), hydrochloric acid (HCl, 12 M), and ethanol (99%) 

were obtained from Beijing Chemical Reagent Co. Ltd. Glucose (99.99%), ascorbic 

acid (AA, >99.99%), sodium chloride (NaCl, >99.5%), calcium chloride (CaCl2, 

>99.5%), uric acid (UA, >99.99%), dopamine (DA, >99%), and gibberellic acid (GA, 

>99%) were acquired from Aladdin Ltd. All reagents are analytical grade. Titanium 

plate (TP) (0.4 mm thick) was supplied by China Qingyuan Metal Materials Co. Ltd.

Ni@TiO2/TP synthesis: Initially, TP underwent ultrasonic treatment in HCl, ethanol, 

and water for 10 min each. Following our previous work1-4, the treated TP was then 

soaked in 5 M NaOH and heated at 180°C in an autoclave for 24 h to obtain sodium 

titanate/TP. Next, sodium titanate/TP was immersed in 0.05 M Ni(NO3)2 to exchange 

Na+ for Ni2+. After rinsing and drying, it was annealed at 500°C under an Ar/H2 

atmosphere for 2 h, resulting in Ni@TiO2/TP. For comparison, TiO2/TP was 

synthesized similarly, using dilute HCl instead of Ni(NO3)2 to exchange Na+ for H+.

Characterizations: X-ray diffraction (XRD) analyses were conducted using a Rigaku 

D/MAX 2550 diffractometer. X-ray photoelectron spectroscopy (XPS) measurements 

were performed with a Thermo Scientific K-Alpha spectrometer, utilizing magnesium 

(Mg) for excitation. Scanning electron microscope (SEM) images were equipped with 

a Hitachi S-4800 field emission microscope. Transmission electron microscopy was 

carried out using an FEI Talos F200x microscope.

Electrochemical measurements: The electrochemical performance of Ni@TiO2/TP 

and TiO2/TP (0.2 ~ 0.5 cm) electrodes was studied using a conventional three-

electrode system on a Chi660E electrochemical workstation. A platinum wire served 

as the counter electrode, an Ag/AgCl electrode as the reference, and the prepared 

Ni@TiO2/TP electrode as the working electrode. Cyclic voltammetry (CV) scans 

were performed within a potential range of 0.2 to 0.6 V. Glucose sensing via 

chronoamperometry (CA) was conducted at 0.50 V, with 0.1 M NaOH as the 
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electrolyte for both CV and CA measurements. All potentials were referenced to the 

Ag/AgCl electrode without correction.
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Fig. S1. (a) XRD pattern and (b) SEM image of TiO2/TP.
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Fig. S2. SEM image of Ni@TiO2/TP
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Fig. S3. SEM and corresponding EDX elemental mapping images of Ni@TiO2.
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Fig. S4. EDX spectrum of Ni@TiO2.
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Fig. S5. XPS survey spectrum of Ni@TiO2.
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Fig. S6. Plot of the current vs. the concentration of glucose for Ni@TiO2/TP.
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Fig. S7. Current response time of Ni@TiO2/TP.
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Fig. S8. Relative current response of the Ni@TiO2/TP electrode towards 0.1 mM 

glucose after 15 days of storage.



S11

Fig. S9. Inter-electrode repeatability of Ni@TiO2/TP.
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Fig. S10. Intra-electrode repeatability of Ni@TiO2/TP.
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Table S1. Comparison of the performances of Ni@TiO2/TP with other reported non-

enzymatic electrode for glucose detection.

Electrodes
Sensitivity

(µA mM–1cm–2)

Linger range 

(mM)

LOD

(µM)
Ref.

Ni@TiO2/TP
10060

3940
0.001-1 0.08 This work

Ni–TiO2/XC72R
3300

273.7

0.05-1

1-20
0.144 5

NiO-TiO2/GCE 24.85 0.002-2 0.7 6

Ni(OH)2/TiO2 192 0.03-14 8 7

NPs/TiO2NTs 700 0.004-4.8 2 8

WO3 doped TiO2 

nanotubes with 

Ni(OH)2 nanoparticles

70 / 28 9

Ni-MOF NSAs/CC 13428.89 0.001-7 0.57 10

Conductive Ni-MOF 21744 0.001-8 0.66 11

Ni-DLC/TiO2 1063.78 0.99-22.9 0.53 12

Ni/rGO/PP / 0.0005-1 0.36 13

NiCo-LDH/MWCNTs
2.55

1.15

0.0001-3

3-9.23
0.03 14
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Table S2. Recovery tests for Ni@TiO2/TP glucose biosensor in human blood serum 

and cell culture fluid.

Sample Added (mM) Found (mM) Recovery (%) RSD (%) (n=3)

0.1 0.097 97.4 1.5

0.3 0.294 98.3 2.7Human blood serum

0.5 0.508 101.5 2.2

0.1 0.096 96.1 3.4

0.3 0.307 102.3 2.1Cell culture fluid

0.5 0.494 98.8 4.2
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