Supplementary Information (SI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2024

## **Supporting information**

## **Development of 3D-printed Conducting Microneedle-Based**

## Electrochemical Point-of-Care Device for Transdermal Sensing of Chlorpromazine

Sachin Kadian<sup>1</sup>, Siba Sundar Sahoo<sup>2</sup>, Shubhangi Shukla<sup>1</sup> and Roger J. Narayan<sup>1,2</sup>

<sup>1</sup>Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27695, USA

<sup>2</sup>Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA



**Fig S1:** Illustration of chlorpromazine detection using a microneedle sensor in a skin-mimicking phantom gel. (a) Differential pulse voltammetry spectra of microneedle sensor towards different concentrations of chlorpromazine infused in the phantom gel, and (b) corresponding calibration plot between the chlorpromazine concentration and peak current values.



**Fig S2:** Differential pulse voltammetry response of the fabricated microneedle array electrode towards potential interference compounds.