Enzyme-free and Highly Sensitive Detection of Human Epidermal Growth Factor-2 Based on the MNAzyme Signal Amplification in Breast Cancer

Feifan Yin^{a1}, Zhiqiang Hou^{a1}, Yanheng Yao^a, Miao He^a, Yang Xiang^{a,b,*}, Zhongyun Wang^{c,*}

^aState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China

^bState Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P. R. China

°Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing

210029, P. R. China

*Corresponding authors.

1

E-mail address: xiangy@nju.edu.cn (Y. Xiang), zywang1970@126.com (Z. Wang) ¹These authors contributed equally to this work.

Contents

Table S1. The DNA sequences used in this work	3
Table S2. Comparison of different biosensors for the detection of HER2	4
Table S3. Recoveries of HER2 in spiked serum samples from healthy people	5
Figure S1. The characterization of DNA-functionalized streptavidin magnetic beads	6
Figure S2. The calibration curve obtained by commercial ELISA kit	7
References	8

Name	Sequence (5'-3')
HER2 Aptamer	AATTAAGCCGCGAGGGGGGGGGGGGGGGGGGGGGGGGGG
1	
cDNA	CGGCGCTCCCTCCCTATCCCATCCCG
Partzyme A	CAGTCAGAGGCTAGCTGAGGGGGGGGGCGCCG
Partzyme B	CGGGATGGGATAGGACAACGAGGTCCATG
Substrate	Biotin-
	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

Type of sensors/Method	Time	Detection limit	Linear range	Standard method	Ref.
Electrochemical/Reduced graphene oxide-chitosan- aptamer interface	3 hours	0.21 ng/mL	0.5-2 ng/mL and 2-75 ng/mL	ELISA	[1]
Electrochemical/A HER2 specific peptide immobilized onto a gold electrode surface	> 10 hours	0.047 pg/ mL	1-100 pg/mL	No	[2]
Electrochemical/A sandwich- type electrochemical immunosensor based on in situ silver deposition	123 min	2.0 × 10 ⁻⁵ ng /mL	5.0 ×10 ⁻⁴ -50.0 ng/mL	ELISA	[3]
Electrochemical/Based on 3,4- ethylenedioxythiophene (PEDOT) and a biocompatible peptide hydrogel	> 12 hours	45 pg/mL	0.1 ng/mL-1.0 μg/mL	ELISA	[4]
Fluorescence/ Based on the proximity of G-rich sequences to Ag nanoclusters	160 min	0.0904 fM	8.5-340 fM	ELISA	[5]
Fluorescence/Near-infrared MnCuInS/ZnS@BSA and urchin-like AuNP as a novel donor-acceptor pair	2 hours	1 ng/mL	2-100 ng/ml	ELISA	[6]
Fluorescence/Three- dimensional DNA walker	190 min	0.01 ng/mL	0.5-5 ng/mL	No	[7]
Fluorescence/The MNAzyme Signal Amplification	3 hours	0.02 ng/mL	0.5-100 ng/mL	ELISA	This work

4

Table S2. Comparison of different biosensors for the detection of HER2.

Sample	Added (ng/mL)	Determined (ng/mL)	RSD	Recovery (%)
1	0	0.73 ± 0.11	0.150	~
2	0.5	0.56 ± 0.02	0.035	112.0
3	1	1.08 ± 0.09	0.083	108.0
4	5	4.93 ± 0.23	0.047	98.6
5	10	10.44 ± 0.32	0.031	104.4

Table S3. Recoveries of HER2 in spiked serum samples from healthy people.

Figure S1. The characterization of DNA-functionalized streptavidin magnetic beads. (A) Zeta potential analysis before and after substrate modification of magnetic beads. (MB: streptavidin magnetic beads, MB-Sub: Substrate-functionalized streptavidin magnetic beads) (B) The fluorescent spectra of streptavidin magnetic beads (MB) and DNA-functionalized streptavidin magnetic beads (MB-Sub).

6

Figure S2. The calibration curve obtained by commercial ELISA kit.

References.

8

- [1] A. Tabasi, A. Noorbakhsh and E. Sharifi, Biosens. Bioelectron., 2017, 95, 117-123.
- [2] L. Hu, S. Hu, L. Guo, C. Shen, M. Yang and A. Rasooly, Anal. Chem., 2017, 89(4), 2547-2552.
- [3] M. Shamsipur, M. Emami, L. Farzin and Saber R, Biosens. Bioelectron., 2018, 103, 54-61.
- [4] W. Wang, R. Han, M. Chen and Luo X, Anal. Chem., 2021, 93(19), 7355-7361.
- [5] M. Zhang, G. Gao, Y. Ding, C. Deng, J. Xiang and H. Wu, Talanta, 2019, 199, 238-243.
- [6] H. Xing, T. Wei, X. Lin and Z. Dai, Anal. Chim. Acta, 2018, 1042, 71-78.
- [7] Y. Y. Xie, S. H. Si, C. Y. Deng and H. Y. Wu, Talanta, 2023, 253, 124071.