
Supplementary Information for 

Development of a Xanthene-Based NIR Fluorescent Probe for Accurate and 
Sensitive Detection of γ-Glutamyl Transpeptidase in Cancer Diagnosis and 
Treatment
Chia-Kai Lai a, Kuppan Magesh b, Sivan Velmathib and Shu-Pao Wua,*
a Department of Applied Chemistry, National Yang Ming Chiao Tung University, 

Hsinchu, ROC, Taiwan

b Department of Chemistry, National Institute of Technology, Tiruchirappalli, India

* Corresponding authors.

spwu@nycu.edu.tw (S. Wu)

Contents

1. Scheme S1 Synthetic route of probe XM-Glu.

2. Scheme S2 Proposed reaction mechanism of XM-Glu reacted with GGT.
3. Synthesis of 2-bromocyclohex-1-ene-1-carbaldehyde (1)
4. Synthesis of 6-methoxy-2,3-dihydro-1H-xanthene-4-carbaldehyde (2)
5. Synthesis of 2-((6-methoxy-2,3-dihydro-1H-xanthen-4-

yl)methylene)malononitrile (3)
6. Synthesis of 2-((6-hydroxy-2,3-dihydro-1H-xanthen-4-yl)methylene)malononitrile 

(XM-OH)
7. Synthesis of tert-butyl N2-(tert-butoxycarbonyl)-N5-(4-

(hydroxymethyl)phenyl)glutaminate (4)
8. Synthesis of tert-butyl N5-(4-(bromomethyl)phenyl)-N2-(tert-

butoxycarbonyl)glutaminate (5)
9. Preparation of stock solution 
10. Cytotoxicity test
11. Figure S1 (a) Absorbance changes at 610 nm and (b) fluorescence changes at 648 

nm of XM-Glu (20 μM) in response to various concentration of GGT (0-100 
mU/mL) in DMSO-H2O (v/v = 4/6, 6 mM PBS buffer, pH 7.4) solution for 4 h. 
λex = 595 nm.

12. Figure S2 The fluorescence intensity at 648 nm of the probe XM-Glu (20 μM) in 
response to GGT (0-20 mU/mL) in DMSO-H2O (v/v = 4/6, 6 mM PBS, pH 7.4) 
solution for 4 h. (λex = 595 nm) The detection limit was calculated to be 0.067 
mU/mL.

Supplementary Information (SI) for Journal of Materials Chemistry B.
This journal is © The Royal Society of Chemistry 2024

mailto:spwu@nycu.edu.tw


13. Figure S3 (a) The fluorescence intensity at 648 nm of fluorophore XM-OH (0 ~ 
12 μM) in DMSO- H2O (v/v = 4/6, 6 mM PBS, pH 7.4) solution. (b) Lineweaver-
Burk plot of probe XM-Glu in response to GGT (100 mU/mL). λex= 595 nm

14. Figure S4 The fluorescence changes of XM-Glu (20 μM), and XM-Glu (20 μM) 
with GGT (100 mU/mL) in different pH value of DMSO-H2O (v/v = 4/6, 6 mM 
PBS) solution for 4 h. λex = 595 nm.

15. Figure S5 HPLC chromatograms of fluorophore XM-OH (100 μM), probe XM-
Glu (100 μM), and XM-Glu (100 μM) + GGT (400 mU/mL). The absorption 
peak was measured at 520 nm. (HPLC conditions: 0 min: 80% H2O + 20% MeOH, 
5 ~ 15 min: 4.5 % H2O + 95.5% MeOH, 20 min: 100% MeOH)

16. Figure S6 ESI-MS spectra of XM-Glu reacted with GGT.
17. Figure S7 Cell viability of HepG2 and HEK293 cells treated with XM-Glu (0, 5, 

10, 15, 20, 25 μM) at 37oC for 24 h. The results are the mean and standard 
deviation of three independent experiments.

18. Figure S8 Fluorescence images of HeLa cells. (a ~ d) Control group. (e ~ h) HeLa 
cells were incubated with XM-Glu (10 μM) at 37oC for 2 h (Blue fluorescence: 
λex = 405 nm. λem = 435 ~ 485 nm. Red fluorescence: λex = 561 nm. λem = 600 ~ 
700 nm.)

19. Figure S9 Fluorescence images of HEK293 cells. Control group (a–d). 
Experimental group treated with XM-Glu (10 μM) at 37°C for 2 hours (e–h). DAPI 
fluorescence: Excitation wavelength = 405 nm, Emission wavelength = 435–485 
nm. Red fluorescence: Excitation wavelength = 561 nm, Emission wavelength = 
600–700 nm.

20. Figure S10 Fluorescence intensity at tumor site pre-injection, 5 min after injection, 
1 h after injection, and 2 h after injection.

21. Figure S11 (a) Fluorescence imaging of tissue sections from tumors and organs of 
mouse incubated with XM-Glu (50 μM) for 2 h. Fluorescence: λex = 545 nm. λem 
= 590 ~ 650 nm. (b) Relative intensity plots of the images.

22. Figure S12 1H NMR (400 MHz) spectrum of Compound 1 in CDCl3.
23. Figure S13 13C NMR (100 MHz) spectrum of Compound 1 in CDCl3

24. Figure S14 1H NMR (400 MHz) spectrum of Compound 2 in CDCl3.
25. Figure S15 13C NMR (100 MHz) spectrum of Compound 2 in CDCl3.
26. Figure S16 FD mass spectrum of compound 2.
27. Figure S17 1H NMR (400 MHz) spectrum of Compound 3 in CDCl3.
28. Figure S18 13C NMR (100 MHz) spectrum of Compound 3 in CDCl3.
29. Figure S19 FD mass spectrum of compound 3
30. Figure S20 1H NMR (400 MHz) spectrum of XM-OH in DMSO-d6.

31. Figure S21 13C NMR (150 MHz) spectrum of XM-OH in DMSO-d6.



32. Figure S22 FD mass spectrum of XM-OH.
33. Figure S23 1H NMR (400 MHz) spectrum of Compound 4 in CDCl3.
34. Figure S24 13C NMR (100 MHz) spectrum of Compound 4 in CDCl3.
35. Figure S25 FD mass spectrum of compound 4.
35. Figure S26 1H NMR (600 MHz) spectrum of Compound 6 in DMSO-d6.

36. Figure S27 13C NMR (150 MHz) spectrum of Compound 6 in DMSO-d6.

37. Figure S28 FD mass spectrum of compound 6.
38. Figure S29 HR-FD mass spectrum of compound 6.
39. Figure S30 1H NMR (400 MHz) spectrum of XM-Glu in DMSO-d6.
40. Figure S31 13C NMR (150 MHz) spectrum of XM-Glu in DMSO-d6.
41. Figure S32 ESI mass spectrum of XM-Glu.
42. Figure S33 HR-ESI mass spectrum of XM-Glu.
43. Table S1 Published fluorescent probes for the detection of GGT.
44. Reference

Synthesis of probe XM-Glu

O
PBr3

1. 0oC 1 hr
2. 40oC reflux 16 hr

DMF

1

OH
H2N

OtBuHO

O O

NH

Boc-Glu-OtBu

OH

HNO

HN
OtBu

O

Boc

HBTU / DIPEA

2

THF

Br

O

OO

O

OO

N

N

Br

HNO

HN
OtBu

O

Boc

THF

PBr3

3

OHO

N

N

XM-OH

4 5

OHO

N

N

XM-OH

OO

N

N
N
H

H
N

O

O

OtBuBoc

OO

N

N
N
H

H2N

O

O

OH

6 XM-Glu

Br
HNO

HN OtBu
O

Boc

K2CO3

DMF
R.T. 20 hr

TFA

DCM

0oC 1 hr

0oC 2 hr

OHO

O

Cs2CO3

DMF
R.T. 16 hr

1. Ac2O reflux 16 hr

2. MeOH reflux 2 hr

NN

BBr3

DCM

1. 0oC 30 min
2. R.T. 16 hr

CHCl3

1. 0oC 10 min
2. R.T. 3 hr

Boc

Scheme S1 Synthetic route of probe XM-Glu.
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Scheme S2 Proposed reaction mechanism of XM-Glu reacted with GGT.

Synthesis of 2-bromocyclohex-1-ene-1-carbaldehyde (1)1

DMF (7.8 mL, 100 mmol) was mixed with 20 mL anhydrous chloroform. The 

reaction mixture was cooled to 0oC under N2 condition. Then PBr3 (3.8 mL, 40 mmol) 

was added dropwise to the solution, and it was stirred for 30 minutes. Cyclohexanone 

(2.06 mL, 20 mmol) was then added, and was reacted for another 16 hours at 25oC. 

After the reaction, the mixture was poured into ice H2O and adjusted to pH 7 with solid 

NaHCO3. The solution was extracted with DCM and H2O. The organic layer was then 

dried over MgSO4 and the solvent was removed to yield orange oil. The crude product 

was directly used in next step without further purification.1H NMR (400 MHz, 

CDCl3)s, 1H), 2.65 (m, 2H), 2.17 (m, 2H), 1.67 (m, 2H), 1.59 (m, 2H). 13C 

NMR(100MHz, CDCl3) δ 194.0, 144.0, 135.4, 38.5, 24.6, 23.9, 20.7.

Synthesis of 6-methoxy-2,3-dihydro-1H-xanthene-4-carbaldehyde (2)1

Compound 1 (1 g, 5.32 mmol), 2-hydroxy-4-methoxybenzaldehyde (402 mg, 2.64 

mmol) and cesium carbonate (5 g, 15.35 mmol) were dissolved in 10 mL anhydrous 

DMF. The reaction mixture was stirred for 16 hours at room temperature. After the 

reaction, the mixture was filtered and the filtrate was extracted with DCM and H2O for 

three times. The organic layer was then dried over MgSO4 and the solvent was removed. 

The crude product was purified with column chromatography (Hexane/EtOAc = 4:1) 

to obtain compound 2 as a yellow solid (210 mg, 32%). 1H NMR (400 MHz, CDCl3) 

10.32 (s, 1H), 7.08 (d, J = 9.2 Hz, 1H), 6.67-6.63 (m, 3H), 3.84 (s, 3H), 2.57 (t, J = 

5.96 Hz, 2H), 2.45 (t, J = 6.08 Hz, 2H), 1.72 (tt, J1= 6.16 Hz, J2 = 5.96 Hz, 2H).  13C 



NMR (100 MHz) 187.6, 161.4, 160.8, 153.4, 127.4, 126.8, 

LRMS m/z (FD) calcd. for 

C15H14O3: 242.1; found for: 242.1.

Synthesis of 2-((6-methoxy-2,3-dihydro-1H-xanthen-4-

yl)methylene)malononitrile (3)2

Compound 2 (100 mg, 0.41 mmol) and malononitrile (41 mg, 0.62 mmol) were 

dissolved in 10 mL acetic anhydride. And the reaction mixture was refluxed under N2 

condition for 16 hours. After the reaction, 20 mL methanol was added and the reaction 

was refluxed for another 2 hr. The reaction mixture was concentrated, which was then 

purified by column chromatography with Hexane/EtOAc 3:1 (v/v) as the eluent to 

obtain compound 3 as a deep red solid (80 mg, 67%).1H NMR (400 MHz, CDCl3) 

s, 1H), 7.18 (d, J = 8.3 Hz, 1H), 6.90 (s, 1H), 6.80 – 6.75 (m, 2H), 3.89 (s, 3H), 

2.87 (t, J = 6.0 Hz, 2H), 2.61 (t, J = 5.76 Hz, 2H), 1.83 (tt, J1= 6.0 Hz, J2 = 5.76 Hz, 

2H). 13C (100 MHz)  162.3, 158.6, 154.0, 150.3, 130.8, 127.9, 126.1, 117.6, 115.7, 

MS m/z (FD) calcd. for 

C18H14N2O2: 290.1; found for: 290.1.

Synthesis of 2-((6-hydroxy-2,3-dihydro-1H-xanthen-4-

yl)methylene)malononitrile (XM-OH)2

Compound 3 (252 mg, 0.87 mmol) was dissolved in 30 mL ultra-dry DCM, and 

BBr3 (1.7 mL, 17.37 mmol) was added at 0oC under N2 condition. The reaction mixture 

was stirred at 0oC for 1 hour and refluxed for another 16 hours. After the reaction, the 

reaction mixture was neutralized by saturated NaHCO3 solution at 0oC, which was 

extracted with DCM and H2O. The organic layer was then dried over MgSO4 and the 

solvent was evaporated. The crude product was purified by column chromatography 

with Hexane/EtOAc 2:1 (v/v) as the eluent to obtain XM-OH as a deep red solid (144 

mg, 60%).1H NMR (400 MHz, DMSO-d6)  10.6 (s, 1H), 8.15 (s, 1H), 7.37 (d, J = 8.44 



Hz, 1H), 7.34 (s, 1H), 6.91 (d, J = 2.04 Hz, 1H), 6.75 (dd, J1 = 8.44 Hz, J2 = 2.04 Hz, 

1H), 2.73 (t, J = 6.0 Hz, 2H), 2.60 (t, J = 5.76 Hz, 2H), 1.74 (tt, J1 = 6.0 Hz, J2 = 5.76 

Hz, 2H). 13C NMR (150 MHz, DMSO-d6) 

LRMS m/z (FD) calcd. for C17H12N2O2: 276.1; found for: 

276.1.

Synthesis of tert-butyl N2-(tert-butoxycarbonyl)-N5-(4-

(hydroxymethyl)phenyl)glutaminate (4)3

N-(tert-butoxycarbonyl)glutamic acid tert-butyl ester (Boc-Glu-OtBu) (455 mg, 

1.5 mmol), hexafluorophosphate benzotriazole tetramethyl uranium (HBTU) (569 mg, 

1.5 mmol) and N,N-diisopropylethylamine (DIPEA) (412 L, 3 mmol) were added to  

anhydrous THF (8 mL) and stirred for 30 minutes. Then the reaction mixture was 

treated with p-aminobenzeyl alcohol (222 mg, 1.8 mmol) and stirred at 0oC for 10 

minutes and then at room temperature for 3 hours. After the reaction, the solvent was 

removed under reduced pressure. The reaction mixture was extracted with EtOAc and 

brines. The organic layer was then dried over MgSO4 and the solvent was evaporated. 

The crude product was purified by column chromatography with Hexane/EtOAc 1:1 

(v/v) as the eluent to obtain compound 4 as a light yellow solid (560 mg, 91%).1H NMR 

(400 MHz, CDCl3) (Figure S22) sdJ = 8.12 Hz, dJ = 

8.12 Hz,d, J = 7.60 Hz 1H), 4.64 (d, J = 4.00 Hz 2H), 4.22 (m, 1H), 2.43 

(m, 2H), 2.26 (m, 2H), 1.46 (s, 18H) 13C NMR (100 MHz, CDCl3) (Figure 

S23)

LRMS m/z (FD) (Figure S24) calcd. for C21H32N2O6: 

408.2; found for: 408.2.

Synthesis of tert-butyl N5-(4-(bromomethyl)phenyl)-N2-(tert-

butoxycarbonyl)glutaminate (5)3

Compound 4 (244 mg, 0.6 mmol) was dissolved in anhydrous THF (10 mL), and 



PBr3 (57 L, 0.6 mmol) was added at 0oC under N2 condition. The reaction mixture 

was stirred at 0oC for 1 hours. Then, the reaction mixture was added to a saturated 

NaHCO3 solution (20 mL) at 0oC, which was then extracted with EtOAc and H2O. 

The organic layer was then dried over MgSO4 and the solvent was evaporated. The 

crude product was used in next step without further purification. (172 mg, 61%).

Preparation of stock solution 

Solutions of cysteine, homocysteine, glutathione, hydrogen peroxide, and HOCl 

were prepared in distilled water at a concentration of 1 mM. Enzymes including 

acetylcholinesterase, alkaline phosphatase, b-galactosidase, g-glutamyl transpeptidase, 

and tyrosinase were produced at 1U/mL in 10 mM PBS buffer. Singlet oxygen was 

created by combining 1 mM hydrogen peroxide with sodium hypochlorite, while O2- 

was created by dissolving 1 mM potassium superoxide in distilled water. Solutions with 

pH ranging from 4.0 to 12.0 were prepared in a 10 mM PBS buffer by adding various 

concentrations of 1M HCl or 1M NaOH. For photophysical studies, a solution of XM-

Glu (20 μM) was prepared by diluting the stock solution in a mixture of H2O and 

DMSO (volume ratio of 6:4) with 6 mM PBS buffer (pH 7.4).

Cytotoxicity test

The cytotoxicity of the probe XM-Glu probe was evaluated using MTT tests. 

HepG2 and HEK293 cells were planted on 96 well plates with 200 L Dulbecco 

modified Eagle medium (DMEM) and incubated for 24 hours at 37°C under 5% CO2. 

Various concentrations of XM-Glu (0, 5, 10, 15, and 25 μM) were incubated with the 

cells for an additional 24 hours. The cells were treated with 1 mg/mL of 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) for 4 hours, and then 

the purple crystals were dissolved in DMSO. The absorbance (570 nm) was measured 

by microplate readers. The following equation shows the calculation for cell viability:



𝐶𝑒𝑙𝑙 𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) =
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑔𝑟𝑜𝑢𝑝

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑔𝑟𝑜𝑢𝑝
× 100%
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Figure S1 (a) Absorbance changes at 610 nm and (b) fluorescence changes at 648 nm 

of XM-Glu (20 μM) in response to various concentration of GGT (0-100 mU/mL) in 

DMSO-H2O (v/v = 4/6, 6 mM PBS buffer, pH 7.4) solution for 4 h. λex = 595 nm.
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Figure S2 The fluorescence intensity at 648 nm of the probe XM-Glu (20 μM) in 

response to GGT (0-20 mU/mL) in DMSO-H2O (v/v = 4/6, 6 mM PBS, pH 7.4) 

solution for 4 h. (λex = 595 nm) The detection limit was calculated to be 0.067 

mU/mL.
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Figure S3 (a) The fluorescence intensity at 648 nm of fluorophore XM-OH (0 ~ 12 

μM) in DMSO- H2O (v/v = 4/6, 6 mM PBS, pH 7.4) solution. (b) Lineweaver-Burk 

plot of probe XM-Glu in response to GGT (100 mU/mL). λex= 595 nm
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Figure S4 The fluorescence changes of XM-Glu (20 μM), and XM-Glu (20 μM) 

with GGT (100 mU/mL) in different pH value of DMSO-H2O (v/v = 4/6, 6 mM PBS) 

solution for 4 h. λex = 595 nm.
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Figure S5 HPLC chromatograms of fluorophore XM-OH (100 μM), probe XM-Glu 

(100 μM), and XM-Glu (100 μM) + GGT (400 mU/mL). The absorption peak was 

measured at 520 nm. (HPLC conditions: 0 min: 80% H2O + 20% MeOH, 5 ~ 15 min: 

4.5 % H2O + 95.5% MeOH, 20 min: 100% MeOH)



Figure S6 ESI-MS spectra of XM-Glu reacted with GGT.
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Figure S7 Cell viability of HepG2 and HEK293 cells treated with XM-Glu (0, 5, 10, 

15, 20, 25 μM) at 37oC for 24 h. The results are the mean and standard deviation of 

three independent experiments.



Figure S8 Fluorescence images of HeLa cells. (a ~ d) Control group. (e ~ h) HeLa 

cells were incubated with XM-Glu (10 μM) at 37oC for 2 h (Blue fluorescence: λex = 

405 nm. λem = 435 ~ 485 nm. Red fluorescence: λex = 561 nm. λem = 600 ~ 700 nm).

Figure S9 Fluorescence images of HEK293 cells. Control group (a–d). Experimental 

group treated with XM-Glu (10 μM) at 37°C for 2 hours (e–h). DAPI fluorescence: 

Excitation wavelength = 405 nm, Emission wavelength = 435–485 nm. Red 

fluorescence: Excitation wavelength = 561 nm, Emission wavelength = 600–700 nm.
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Figure S10 Fluorescence intensity at tumor site pre-injection, 5 min after injection, 1 

h after injection, and 2 h after injection.
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Figure S11 (a) Fluorescence imaging of tissue sections from tumors and organs of 

mouse incubated with XM-Glu (50 μM) for 2 h. Fluorescence: λex = 545 nm. λem = 

590 ~ 650 nm. (b) Relative intensity plots of the images.
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Figure S12 1H NMR (400 MHz) spectrum of Compound 1 in CDCl3.

Figure S13 13C NMR (100 MHz) spectrum of Compound 1 in CDCl3.



Figure S14 1H NMR (400 MHz) spectrum of Compound 2 in CDCl3.

Figure S15 13C NMR (100 MHz) spectrum of Compound 2 in CDCl3.



Figure S16 FD mass spectrum of compound 2.

Figure S17 1H NMR (400 MHz) spectrum of Compound 3 in CDCl3.



Figure S18 13C NMR (100 MHz) spectrum of Compound 3 in CDCl3.

Figure S19 FD mass spectrum of compound 3



Figure S20 1H NMR (400 MHz) spectrum of XM-OH in DMSO-d6.

Figure S21 13C NMR (150 MHz) spectrum of XM-OH in DMSO-d6.



Figure S22 FD mass spectrum of XM-OH.

Figure S23 1H NMR (400 MHz) spectrum of Compound 4 in CDCl3.



Figure S24 13C NMR (100 MHz) spectrum of Compound 4 in CDCl3.

Figure S25 FD mass spectrum of compound 4.



Figure S26 1H NMR (600 MHz) spectrum of Compound 6 in DMSO-d6.

Figure S27 13C NMR (150 MHz) spectrum of Compound 6 in DMSO-d6.



Figure S28 FD mass spectrum of compound 6.

Figure S29 HR-FD mass spectrum of compound 6.



Figure S30 1H NMR (400 MHz) spectrum of XM-Glu in DMSO-d6.

Figure S31 13C NMR (150 MHz) spectrum of XM-Glu in DMSO-d6.



Figure S32 ESI mass spectrum of XM-Glu.

Figure S33 HR-ESI mass spectrum of XM-Glu.

Table S1 Published fluorescent probes for the detection of GGT.
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595 nm /

645 nm
0.067
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