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. Figure S1 (a) Absorbance changes at 610 nm and (b) fluorescence changes at 648

nm of XM-Glu (20 uM) in response to various concentration of GGT (0-100
mU/mL) in DMSO-H,0 (v/v =4/6, 6 mM PBS buffer, pH 7.4) solution for 4 h.
Aex = 595 nm.

Figure S2 The fluorescence intensity at 648 nm of the probe XM-Glu (20 uM) in
response to GGT (0-20 mU/mL) in DMSO-H,0 (v/v = 4/6, 6 mM PBS, pH 7.4)
solution for 4 h. (Ax = 595 nm) The detection limit was calculated to be 0.067
mU/mL.
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Figure S3 (a) The fluorescence intensity at 648 nm of fluorophore XM-OH (0 ~
12 uM) in DMSO- H,0 (v/v =4/6, 6 mM PBS, pH 7.4) solution. (b) Lineweaver-
Burk plot of probe XM-Glu in response to GGT (100 mU/mL). A= 595 nm
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Table S1 Published fluorescent probes for the detection of GGT.
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Scheme S2 Proposed reaction mechanism of XM-Glu reacted with GGT.
Synthesis of 2-bromocyclohex-1-ene-1-carbaldehyde (1)'

DMF (7.8 mL, 100 mmol) was mixed with 20 mL anhydrous chloroform. The
reaction mixture was cooled to 0°C under N, condition. Then PBr; (3.8 mL, 40 mmol)
was added dropwise to the solution, and it was stirred for 30 minutes. Cyclohexanone
(2.06 mL, 20 mmol) was then added, and was reacted for another 16 hours at 25°C.
After the reaction, the mixture was poured into ice H,O and adjusted to pH 7 with solid
NaHCOs;. The solution was extracted with DCM and H,O. The organic layer was then
dried over MgSO, and the solvent was removed to yield orange oil. The crude product
was directly used in next step without further purification.'H NMR (400 MHz,
CDCl3) 6 9.90 (s, 1H), 2.65 (m, 2H), 2.17 (m, 2H), 1.67 (m, 2H), 1.59 (m, 2H). 13C
NMR(100MHz, CDCl3) 6 194.0, 144.0, 135.4, 38.5, 24.6, 23.9, 20.7.

Synthesis of 6-methoxy-2,3-dihydro-1H-xanthene-4-carbaldehyde (2)'

Compound 1 (1 g, 5.32 mmol), 2-hydroxy-4-methoxybenzaldehyde (402 mg, 2.64
mmol) and cesium carbonate (5 g, 15.35 mmol) were dissolved in 10 mL anhydrous
DMEF. The reaction mixture was stirred for 16 hours at room temperature. After the
reaction, the mixture was filtered and the filtrate was extracted with DCM and H,O for
three times. The organic layer was then dried over MgSO, and the solvent was removed.
The crude product was purified with column chromatography (Hexane/EtOAc = 4:1)
to obtain compound 2 as a yellow solid (210 mg, 32%). 'H NMR (400 MHz, CDCl3)
5 10.32 (s, 1H), 7.08 (d, J = 9.2 Hz, 1H), 6.67-6.63 (m, 3H), 3.84 (s, 3H), 2.57 (t,J =

5.96 Hz, 2H), 2.45 (t, J = 6.08 Hz, 2H), 1.72 (tt, J;= 6.16 Hz, J, = 5.96 Hz, 2H). '3C



NMR (100 MHz) 6187.6, 1614, 160.8, 153.4, 1274, 126.8,
126.6, 114.6, 112.6, 110.9, 100.5, 55.6, 29.9, 21.5, 20.4. LRMS m/z (FD) calcd. for
C5H405: 242.1; found for: 242.1.

Synthesis of 2-((6-methoxy-2,3-dihydro-1H-xanthen-4-
yl)methylene)malononitrile (3)?

Compound 2 (100 mg, 0.41 mmol) and malononitrile (41 mg, 0.62 mmol) were
dissolved in 10 mL acetic anhydride. And the reaction mixture was refluxed under N,
condition for 16 hours. After the reaction, 20 mL methanol was added and the reaction
was refluxed for another 2 hr. The reaction mixture was concentrated, which was then
purified by column chromatography with Hexane/EtOAc 3:1 (v/v) as the eluent to
obtain compound 3 as a deep red solid (80 mg, 67%)."H NMR (400 MHz, CDCls)
3 8.06 (s, 1H), 7.18 (d, J = 8.3 Hz, 1H), 6.90 (s, 1H), 6.80 — 6.75 (m, 2H), 3.89 (s, 3H),
2.87 (t, J = 6.0 Hz, 2H), 2.61 (t, ] = 5.76 Hz, 2H), 1.83 (tt, J;= 6.0 Hz, J, = 5.76 Hz,
2H). 3C (100 MHz) 6 162.3, 158.6, 154.0, 150.3, 130.8, 127.9, 126.1, 117.6, 115.7,
114.8, 112.9, 109.8, 100.1, 70.2, 55.8, 29.1, 24.7,20.5. MS  m/z (FD) calcd. for
CisH14N>0,: 290.1; found for: 290.1.

Synthesis of 2-((6-hydroxy-2,3-dihydro-1H-xanthen-4-
yl)methylene)malononitrile (XM-OH)?

Compound 3 (252 mg, 0.87 mmol) was dissolved in 30 mL ultra-dry DCM, and
BBr; (1.7 mL, 17.37 mmol) was added at 0°C under N, condition. The reaction mixture
was stirred at 0°C for 1 hour and refluxed for another 16 hours. After the reaction, the
reaction mixture was neutralized by saturated NaHCOj; solution at 0°C, which was
extracted with DCM and H,O. The organic layer was then dried over MgSO, and the
solvent was evaporated. The crude product was purified by column chromatography
with Hexane/EtOAc 2:1 (v/v) as the eluent to obtain XM-OH as a deep red solid (144

mg, 60%).'H NMR (400 MHz, DMSO-dg) 8 10.6 (s, 1H), 8.15 (s, 1H), 7.37 (d, ] = 8.44



Hz, 1H), 7.34 (s, 1H), 6.91 (d, J = 2.04 Hz, 1H), 6.75 (dd, J, = 8.44 Hz, J, = 2.04 Hz,
1H), 2.73 (t, ] = 6.0 Hz, 2H), 2.60 (t, J = 5.76 Hz, 2H), 1.74 (tt, J, = 6.0 Hz, J, = 5.76
Hz, 2H). *C NMR (150 MHz, DMSO-ds) 116.89, 114.25, 114.03, 109.33, 102.67,
66.65, 28.46, 24.77, 20.51 LRMS m/z (FD) calcd. for C{;H,N,O,: 276.1; found for:
276.1.
Synthesis of tert-butyl N2-(tert-butoxycarbonyl)-N>-(4-
(hydroxymethyl)phenyl)glutaminate (4)*

N-(tert-butoxycarbonyl)glutamic acid tert-butyl ester (Boc-Glu-O7Bu) (455 mg,
1.5 mmol), hexafluorophosphate benzotriazole tetramethyl uranium (HBTU) (569 mg,
1.5 mmol) and N, N-diisopropylethylamine (DIPEA) (412 pL, 3 mmol) were added to
anhydrous THF (8 mL) and stirred for 30 minutes. Then the reaction mixture was
treated with p-aminobenzeyl alcohol (222 mg, 1.8 mmol) and stirred at 0°C for 10
minutes and then at room temperature for 3 hours. After the reaction, the solvent was
removed under reduced pressure. The reaction mixture was extracted with EtOAc and
brines. The organic layer was then dried over MgSO, and the solvent was evaporated.
The crude product was purified by column chromatography with Hexane/EtOAc 1:1
(v/v) as the eluent to obtain compound 4 as a light yellow solid (560 mg, 91%).'H NMR
(400 MHz, CDCl;) (Figure S22) 6 8.84 (s, 1H), 7.60 (d, J = 8.12 Hz, 2H), 7.32 (d, ] =
8.12 Hz, 2H), 5.36 (d, J = 7.60 Hz 1H), 4.64 (d, J = 4.00 Hz 2H), 4.22 (m, 1H), 2.43
(m, 2H), 2.26 (m, 2H), 1.46 (s, 18H) 3C NMR (100 MHz, CDCls) (Figure
S23) 5 171.24, 170.58, 156.56, 137.88, 136.50, 127.75, 119.83, 82.75, 80.51, 65.01, 5
3.20, 34.14, 30.68, 28.30, 27.96 LRMS m/z (FD) (Figure S24) calcd. for C,;H3,N,O¢:
408.2; found for: 408.2.
Synthesis of zert-butyl N3-(4-(bromomethyl)phenyl)-N2-(tert-
butoxycarbonyl)glutaminate (5)°

Compound 4 (244 mg, 0.6 mmol) was dissolved in anhydrous THF (10 mL), and



PBr; (57 uL, 0.6 mmol) was added at 0°C under N, condition. The reaction mixture
was stirred at 0°C for 1 hours. Then, the reaction mixture was added to a saturated
NaHCO; solution (20 mL) at 0°C, which was then extracted with EtOAc and H,O.
The organic layer was then dried over MgSO, and the solvent was evaporated. The
crude product was used in next step without further purification. (172 mg, 61%).
Preparation of stock solution

Solutions of cysteine, homocysteine, glutathione, hydrogen peroxide, and HOCI
were prepared in distilled water at a concentration of 1 mM. Enzymes including
acetylcholinesterase, alkaline phosphatase, b-galactosidase, g-glutamyl transpeptidase,
and tyrosinase were produced at 1U/mL in 10 mM PBS buffer. Singlet oxygen was
created by combining 1 mM hydrogen peroxide with sodium hypochlorite, while O2-
was created by dissolving 1 mM potassium superoxide in distilled water. Solutions with
pH ranging from 4.0 to 12.0 were prepared in a 10 mM PBS buffer by adding various
concentrations of IM HCI or 1M NaOH. For photophysical studies, a solution of XM-
Glu (20 uM) was prepared by diluting the stock solution in a mixture of HO and
DMSO (volume ratio of 6:4) with 6 mM PBS buffer (pH 7.4).
Cytotoxicity test

The cytotoxicity of the probe XM-Glu probe was evaluated using MTT tests.
HepG2 and HEK293 cells were planted on 96 well plates with 200 L Dulbecco
modified Eagle medium (DMEM) and incubated for 24 hours at 37°C under 5% CO,.
Various concentrations of XM-Glu (0, 5, 10, 15, and 25 pM) were incubated with the
cells for an additional 24 hours. The cells were treated with 1 mg/mL of 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) for 4 hours, and then
the purple crystals were dissolved in DMSO. The absorbance (570 nm) was measured

by microplate readers. The following equation shows the calculation for cell viability:
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Figure S1 (a) Absorbance changes at 610 nm and (b) fluorescence changes at 648 nm
of XM-Glu (20 uM) in response to various concentration of GGT (0-100 mU/mL) in

DMSO-H,0 (v/v =4/6, 6 mM PBS buffer, pH 7.4) solution for 4 h. A, = 595 nm.
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Figure S2 The fluorescence intensity at 648 nm of the probe XM-Glu (20 uM) in
response to GGT (0-20 mU/mL) in DMSO-H,0 (v/v =4/6, 6 mM PBS, pH 7.4)
solution for 4 h. (Ax = 595 nm) The detection limit was calculated to be 0.067

mU/mL.
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Figure S3 (a) The fluorescence intensity at 648 nm of fluorophore XM-OH (0 ~ 12
uM) in DMSO- H,0 (v/v =4/6, 6 mM PBS, pH 7.4) solution. (b) Lineweaver-Burk

plot of probe XM-Glu in response to GGT (100 mU/mL). A= 595 nm
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Figure S4 The fluorescence changes of XM-Glu (20 pM), and XM-Glu (20 uM)

with GGT (100 mU/mL) in different pH value of DMSO-H,O (v/v = 4/6, 6 mM PBS)

solution for 4 h. A, = 595 nm.
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Figure S5 HPLC chromatograms of fluorophore XM-OH (100 uM), probe XM-Glu
(100 uM), and XM-Glu (100 uM) + GGT (400 mU/mL). The absorption peak was
measured at 520 nm. (HPLC conditions: 0 min: 80% H,O + 20% MeOH, 5 ~ 15 min:

4.5 % H,0 + 95.5% MeOH, 20 min: 100% MeOH)
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Figure S6 ESI-MS spectra of XM-Glu reacted with GGT.
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Figure S7 Cell viability of HepG2 and HEK293 cells treated with XM-Glu (0, 5, 10,
15, 20, 25 uM) at 37°C for 24 h. The results are the mean and standard deviation of

three independent experiments.
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Figure S8 Fluorescence images of HeLa cells. (a ~ d) Control group. (e ~ h) HeLa
cells were incubated with XM-Glu (10 pM) at 37°C for 2 h (Blue fluorescence: Ao =

405 nm. A, = 435 ~ 485 nm. Red fluorescence: A, = 561 nm. Agy, = 600 ~ 700 nm).
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Figure S9 Fluorescence images of HEK293 cells. Control group (a—d). Experimental
group treated with XM-Glu (10 uM) at 37°C for 2 hours (e-h). DAPI fluorescence:
Excitation wavelength = 405 nm, Emission wavelength = 435485 nm. Red

fluorescence: Excitation wavelength = 561 nm, Emission wavelength = 600—700 nm.
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Figure S10 Fluorescence intensity at tumor site pre-injection, 5 min after injection, 1

h after injection, and 2 h after injection.
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Figure S11 (a) Fluorescence imaging of tissue sections from tumors and organs of
mouse incubated with XM-Glu (50 uM) for 2 h. Fluorescence: Aex = 545 nm. Aep, =

590 ~ 650 nm. (b) Relative intensity plots of the images.
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Figure S23 'H NMR (400 MHz) spectrum of Compound 4 in CDCl;.
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Figure S27 *C NMR (150 MHz) spectrum of Compound 6 in DMSO-d,
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Table S1 Published fluorescent probes for the detection of GGT.
Detection Kn (M)
Probe structure Aex/Aem limit Vmax (UM s1) | Ref.
(mU/ mL) Keat (7))
"% 451 nm/
s~ A AL, 1.47 N.D. 4
- RenCyck) 610 nm




390 nm / Kin=19.3
2.27 5
640 nm Kear=0.118
680 nm / K,=4.264
0.4 6
727 nm Vimax = 0.04
687 nm /
N.D. N.D. 7
714 nm
710 nm /
N.D. K= 16 8
iy 770 nm
i OO 355 nm/
“ PP 0.3 Km=9.8 9
NHJ\/\EfbH 500 nm
g% 365 nm/
% Hué 0 . 2.9 Km=7.68 10
PORILE 0 S - 650 nm
NHz
oy 408 nm /
M Y 0.76 N.D. 11
’ 550 nm
HC'C!Cj
o EN_O 405 nm /
F jN N 0.117 N.D. 12
PN 490 nm
W Aem=540 nm
LLE (Chemilumin | 0.016 N.D. 13

escence)




680 nm / K,=1.26
0.0036 3
720 nm ket = 0.004
600 nm / K,,=6.62
0.0785 14
670 nm Vinax =0.103
Aem= 600 nm K.,=12.57
(Bioluminesc | 0.192 Vmax =0.057 15
ence) ke =0.917
Aem= 600 nm K,=18.42
(Bioluminesc | 0.442 Vimax = 0.031 15
ence) k= 0.5
585 nm/ K.,=7.64
0.0056 16
615 nm
578 nm/ K.,=18.7
N.D. 17
601 nm Vimax = 0.06
530 nm/
N.D. N.D. 18
565 nm
540 nm / K, =9.87
0.03 19
640 nm Viax = 0.021
N, # 460 nm /
® O 0’\©\ o ) 015 N.D. 20
[R. (CH—}gCGzH) HJ\/\LC;DO 557 nm
354 nm / K, =17.64
Yo o 0.21 21
h ey 473 nm Vimax = 0.024

5
o H
»J) :
“NHg

o
e,
HE




K, =145
496 nm /
HoN O o O N)(L/\‘/COOH N.D. Vinax =0.051 22
H

r 525 nm
’ ket=0.078
K.,=35.4
O ° 555nm/
Q N.D. Vmax =0.01 23
N O o O ”)K/\NALCOOH 582 nm
’ Keat=77.7
O 637 nm /
N.D. N.D. 24

(0]
OO P
X COOH
N S u*/\r 662 nm
NH,

. 360 nm / K, =15.17
HES 5;5 0.59 25
" SRE 472 nm Vinax =0.018
N:% 510 nm/
W N LYCOOH 0.0379 K, =11.48 26

N I 613 nm
NC CN
‘ 490 nm /
CLo 0.057 Kin=10.27 27
635 nm
K.,,=1.85
660 nm /
0.0029 Vinax =0.000109 | 28
712 nm
Keat = 0.005
680 nm /
0.5 K,,=7.01 29
708 nm
K,,=21.46
595 nm/ This
0.067 Vinax =0.0023
645 nm work
Keat = 0.0094

*N.D. Not determined.
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