Supporting Information

Machine Learning-Assisted Pattern Recognition and Imaging of Multiplexed Cancer Cells via Porphyrin-Embedded Dendrimer Array

Jiabao Hu,[‡]^a Weiwei Ni,[‡]^a Mengting Han,[‡]^a Yunzhen Zhan,^a Fei Li,^a Hui Huang,^a Jinsong Han,^{*}^a

^{a.} State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of

Engineering, China Pharmaceutical University, Nanjing 211109, China.

^{b.} E-mail: jinsong.han@cpu.edu.cn

‡ These authors contributed equally to this work.

Table of Contents

1.	Synthesis of	D1-D5				
2.	Fluorescence	e Spectra				8
3.	Linear Discri	iminant Ana	alysis Data			8
4.	Various Data	Split Ratio	os			19
5.	Train	and	Test	Accuracy	in	Different
	Model			20		
6.	CCK-8 Assa	у				21

1.Synthesis of D1-D5

Scheme S1. Synthetic route of D1-D5

To a solution of 2-bromoethylamine hydrobromide salt (1) (556.0 mg, 2.7 mmol) in dichloromethane (20 mL) were added di-*tert*-butyl dicarbonate (Boc₂O) (651.0 mg, 3.0 mmol), triethylamine was added dropwise slowly (754.0 μ L, 5.4 mmol). After stirring for overnight at room temperature, a precipitate formed and then was filtered. The mixture was extracted with dichloromethane (30 mL×3). The combined organic layers were dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the crude product **2**, which was used directly for the next step without further purification. ¹H NMR (400 MHz, Chloroform-d) δ 4.97 (s, 1H), 3.56 (q, J = 5.9 Hz, 2H), 3.48 (t, J = 5.9 Hz, 2H), 1.47 (s, 9H).

A mixture of **2** (6.7 g, 30.0 mmol), methyl 3,5-dihydroxybenzoate (**3**) (2.0 g, 12.0 mmol), K₂CO₃ (4.2 g, 30.0 mmol) dissolve in dimethylformamide (50 mL) was stirred at 80 °C for 8 h, the mixture was poured into ice water (200 mL), and then extracted with ethyl acetate (50 mL×3). The combined organic layers were dried over anhydrous sodium sulfate, filtrated, then concentrated to afford **4**, the crude product was purified by silica gel column chromatography using petroleum ether/ethyl acetate (v/v = 10:1) as eluent to give white solid product **4** (4.5 g) in 83.7% yield. ¹H NMR (300 MHz, Chloroform-*d*) δ 7.14 (d, *J* = 2.3 Hz, 2H), 6.61 (t, *J* = 2.3 Hz, 1H), 5.10 (d, *J* = 6.1 Hz, 2H), 4.02 (t, *J* = 5.1 Hz, 4H), 3.88 (s, 3H), 3.52 (q, *J* = 5.4 Hz, 4H), 1.44 (s, 18H).

The solid **4** (300.0 mg, 0.7 mmol) was added to 10 mL ethyl acetate solution with hydrochloride. After stirring for overnight at room temperature, a precipitate formed and then was filtered. The suspension was concentrated under reduced pressure to give the crude product **5**, which was used directly for the next step without further purification.

A suspension of methyl 3,5-dihydroxybenzoate (**3**, 1.0 g, 6.0 mmol), K₂CO₃ (2.1 g, 15.0 mmol) and 18-crown-6 (100.0 mg) in 10 mL of 1,2-dibromoethane was heated at 80 °C for 36 h. The reaction mixture was cooled, filtered, extracted with ethyl acetate (30 mL×3) and then the filtrate was evaporated under vacuum giving a residue that was purified by column chromatography using petroleum ether/ethyl acetate (v/v = 10:1) as eluent to give white solid product **6**; Yield: 731.0 mg (45.7%). ¹H NMR (300 MHz, Chloroform-*d*) δ 7.23 (d, *J* = 2.4 Hz, 2H), 6.72 (t, *J* = 2.4 Hz, 1H), 4.34 (t, *J* = 6.1 Hz, 4H), 3.93 (s, 3H), 3.67 (t, *J* = 6.1 Hz, 4H).

The product **6** (1.0 g, 2.6 mmol) was dissolved in THF (20 mL) and 1 M LiOH (5 mL) was added to the above solution. The mixture was stirred at room temperature for 5 h, and then filtered and concentrated to about 10 mL. The resulting residue was neutralized by diluted hydrochloric acid to pH = 5. The precipitation was filtered and dried to afford **7** as a white solid, which was used directly for the next step without further purification. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 (d, *J* = 2.4 Hz, 2H), 6.78 (t, *J* = 2.4 Hz, 1H), 4.36 (t, *J* = 6.1 Hz, 4H), 3.68 (t, *J* = 6.1 Hz, 4H).

To a suspension of the acid 7 (260.0 mg, 0.7 mmol), hydrochloride salt 5 (100.0 mg, 0.3 mmol) and BOP (318.0 mg, 0.7 mmol) in dry dichloromethane (10 mL) was slowly added DIPEA (270 μ L, 2.0 mmol). The mixture was stirred at room temperature for 4 h, extracted with ethyl acetate (30 mL×3). Then the filtrate was evaporated under vacuum giving a residue that was purified by column chromatography using petroleum ether/dichloromethane (v/v = 1:1) as eluent to give white solid product **8** (484.0 mg,

72.5%); ¹H NMR (300 MHz, Chloroform-*d*) δ 7.19 (d, J = 2.3 Hz, 2H), 6.97 (d, J = 2.2 Hz, 4H), 6.73 - 6.65 (m, 3H), 6.62 (t, J = 2.3 Hz, 2H), 4.32 (t, J = 6.0 Hz, 8H), 4.16 (dd, J = 6.2, 3.8 Hz, 4H), 3.92 (s, 3H), 3.90 - 3.82 (m, 4H), 3.65 (t, J = 6.0 Hz, 8H).

The product 8 (200.0 mg, 2.1 mmol) was dissolved in THF (5 mL) and 1 M LiOH (2 mL) was added to the above solution. The mixture was stirred at room temperature for 5 h, and then filtered and concentrated to about 2 mL. The resulting residue was neutralized by diluted hydrochloric acid to pH = 5. The precipitation was filtered and dried to afford 9 as a white solid, which was used directly for the next step without further purification. ¹H NMR (400 MHz, DMSO- d_6) δ 8.74 (t, *J* = 5.6 Hz, 2H), 7.14 (d, *J* = 2.3 Hz, 2H), 7.11 - 7.04 (m, 4H), 6.72 (t, *J* = 2.3 Hz, 2H), 6.67 (t, *J* = 2.4 Hz, 1H), 4.36 (dd, *J* = 6.3, 4.4 Hz, 8H), 4.13 (t, *J* = 5.8 Hz, 4H), 3.81 (dd, *J* = 6.2, 4.4 Hz, 8H), 3.62 (q, *J* = 5.7 Hz, 4H).

To a stirred suspension solution of 4-methoxybenzaldehyde (**10**, 680.0 mg, 5.0 mmol) in propionic acid (10 mL) being heated to 135 °C, pyrrole (335.0 mg, 5.0 mmol) in propionic acid (5 mL) was added drop wise under a nitrogen atmosphere for 1 min via constant pressure drop funnel. The mixture was stirred at 135 °C for 1 h. The reaction system was cooled to room temperature by slow cooling. Extracted with dichloromethane (50 mL) three times, and dried with anhydrous Na₂SO₄. The solvent was removed under vacuum getting crude product. The crude product was subjected to column chromatography using petroleum ether/dichloromethane (v/v = 1:1) as eluent to give purple solid product **11** (232.1 mg, 25.3%); ¹H NMR (300 MHz, Chloroform-*d*) δ 8.89 (s, 8H), 8.15 (s, 8H), 7.33 (d, J = 2.2 Hz, 8H), 4.03 (s, 12H), -2.73 (s, 2H).

To a stirred suspension solution of **11** (1.0 g, 1.4 mmol) in CH_2Cl_2 (20 mL) being cooled to 0 °C, BBr₃ was added drop via constant pressure drop funnel. The mixture was stirred at room temperature overnight. After completion of the reaction, the reaction was quenched with saturation NH₄Cl and stirred at room temperature for another 10 min. Extracted with ethyl acetate (20 mL) three times, and dried with anhydrous Na₂SO₄. The solvent was removed under vacuum. The residue was purified by column chromatography using petroleum ether/ethyl acetate (v/v = 3:1) as eluent to give purple solid product **12** (612.4 mg, 66.3%); ¹H NMR (400 MHz, DMSO- d_6) δ 10.00 (s, 4H), δ 8.99 (s, 8H), 8.03 (s, 8H), 7.23 (s, 8H), -2.88 (s, 2H).

In a flash bottle, **9** (1128.3 mg, 1.2 mmol), DCC (247.6 mg, 1.2 mmol) and DMAP (146.6 mg, 1.2 mmol) were dissolved in 10 mL dried dichloromethane. After stirring for 0.5 h at 0 °C, **12** (100.0 mg, 0.2 mmol) and TsOH (206.6 mg, 1.2 mmol) were added into the flask and the mixture was heated to room temperature. After stirred overnight, the mixture was poured into 30 mL water and extracted with dichloromethane (3×25 mL). The collected organic layer was dried over anhydrous Na₂SO₄. After solvent evaporation, the crude product was purified by a silica gel column using petroleum ether/ethyl acetate (v/v = 1:2) as eluent to give purple solid product **13** (319.5 mg, 53.7%); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.97 (s, 8H), 8.32 (dd, J = 8.6, 2.6 Hz, 8H), 7.73 - 7.63 (m, 24 H), 7.59 (d, J = 2.3 Hz, 8H), 6.89 (t, J = 2.4 Hz, 12H), 4.36 (dd, J = 6.2, 4.5 Hz, 32H), 4.16 (t, J = 5.8 Hz, 16H), 3.81 (dd, J = 6.2, 4.4 Hz, 32H), 3.62 (q, J = 5.8 Hz, 16H), -2.75 (s, 2H).

Synthesis of D1

A mixture of compound **12** (1 eq.) and the trimethylamine (64 eq.) was stirred and heated to reflux in dimethylformamide for 24 h. The solvent was removed under vacuum and the solution was allowed to cool to room temperature, filtered and washed with copious amounts of acetone and ethyl acetate to give a deep red filter cake, Yield 57.2%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.10 - 8.46 (m, 12H), 8.39 - 8.11 (m, 8H), 7.99 (s, 8H), 7.67 (d, *J* = 8.3 Hz, 8H), 7.45 (s, 8H), 7.30 - 6.90 (m, 20H), 6.85 - 6.47 (m, 8H), 4.46 - 4.21 (m, 48H), 4.08 (s, 144H), 3.89 - 3.43 (m, 48H), -2.90 (s, 2H). HRMS (ESI): calcd. For C₂₂₅H₃₁₂N₂₈O₄₀¹⁶⁺ [M] ¹⁶⁺/16: 252.8947, found 252.8429.

Synthesis of D2

The preparation method of compound **D2** was analogous to that used for **D1**. Yield 76.1%. ¹H NMR (400 MHz, Methanol- d_4) δ 8.74 (s, 8H), 7.79 (d, J = 5.91 Hz, 4H), 7.66 - 7.38 (m, 72H), 7.17 (dt, J = 60.3, 21.0 Hz, 52H), 6.87 - 6.45 (m, 16H), 4.67 (s, 96H), 4.60 (s, 8H), 3.37 (s, 32H), 3.15 (s, 48H), 2.94 (s, 48H), -2.75 (s, 2H). HRMS (ESI): calcd. For: C₃₂₀H₃₇₄N₂₈O₄₀¹⁶⁺ [M] ¹⁶⁺/16: 328.0500, found 328.0543.

Synthesis of D3

The preparation method of compound **D3** was analogous to that used for **D1**. Yield 58.8%. ¹H NMR (400 MHz, Methanol- d_4) δ 8.82 (s, 8H), 7.96 (d, J = 23.6 Hz, 15H), 7.28 - 6.95 (m, 24H), 6.91 - 6.44 (m, 12H), 4.60 - 4.31 (m, 32H), 3.76 (ddt, J = 27.7, 17.9, 9.3 Hz, 96H), 3.25 - 3.07 (m, 48H), 2.99 (s, 32H), 2.86 (s, 16H), 1.91 - 1.61 (m, 32H), 1.53 - 1.19 (m, 32H), 1.07 - 0.85 (m, 48H), -2.77 (s, 2H). HRMS (ESI): calcd. For: C₂₇₂H₄₀₆N₂₈O₄₀¹⁶⁺ [M] ¹⁶⁺/16: 294.0657, found 294.0681.

Synthesis of D4

The preparation method of compound **D4** was analogous to that used for **D1**. Yield 43.9%. ¹H NMR (400 MHz, Methanol- d_4) δ 8.89 (s, 8H), 8.03 - 8.00 (m, 4H), 7.28 - 7.21 (m, 8H), 7.18 - 7.15 (m, 4H), 7.10 (s, 8H), 7.04 - 7.00 (m, 8H), 6.78 (d, J = 9.5 Hz, 8H), 6.73 - 6.65 (m, 8H), 6.58 (s, 4H), 4.18 (d, J = 5.5 Hz, 64H), 3.74 (t, J = 4.7 Hz, 64H), 3.51 (d, J = 1.9 Hz, 48H), 3.28 (s, 80H), 3.23 (s, 16H), -2.77 (s, 2H). HRMS (ESI): calcd. For: C₂₅₅H₃₄₀N₂₈O₅₆¹⁶⁺ [M] ¹⁶⁺/16: 293.1533, found 293.1533.

Synthesis of D5

The preparation method of compound **D5** was analogous to that used for **D1**. Yield 28.3%. ¹H NMR (400 MHz, Methanol- d_4) δ 8.90 (s, 8H), 7.95 - 8.25 (m, 4H), 7.20 - 7.12 (m, 56H), 6.88 - 6.58 (m, 24H), 4.57 (s, 1H), 4.36 - 4.26 (m, 96H), 3.82 - 3.74 (m, 32H), 3.25 (d, J = 1.0 Hz, 80H), 2.79 - 2.70 (m, 16H), -2.77 (s, 2H). HRMS (ESI): calcd. for: C₃₂₂H₃₉₄B₁₆N₂₈O₇₀¹⁶⁺ [M] ¹⁶⁺/16: 371.8096, found 371.8047.

2. Fluorescence Spectra

Fig. S1 Normalized excitation and emission spectra of D2-D5.

	Lifetime (ns)	quantum yield (%)
D1	7.80	7.46
D2	8.57	0.53
D3	7.97	3.19
D4	8.47	2.07
D5	8.52	4.62

Table S1. Quantum yield and lifetime of the array.

Fig. S2 Fluorescence lifetime of the array.

3. Linear Discriminant Analysis Data

I ADIC 52 LDA was carried out and resulted in 5 factors of the canonical scores	Tab	le S2	LDA י	was (carried	out and	d resulte	d in 🤅	3 factors	of th	e canonical	scores
--	-----	-------	-------	-------	---------	---------	-----------	--------	-----------	-------	-------------	--------

Analyte		Re	sults LDA	
Cell	Factor 1	Factor 2	Factor 3	Group
PANC-1	11.64	-5.50	-0.62	11.64
PANC-1	14.15	-8.52	-0.72	14.15
PANC-1	14.11	-7.92	0.39	14.11
PANC-1	12.70	-6.39	-0.45	12.70
PANC-1	10.98	-7.10	-0.88	10.98
PANC-1	13.86	-6.87	-3.06	13.86
PANC02	2.53	3.83	3.46	2.53
PANC02	2.69	3.01	6.10	2.69
PANC02	3.30	3.75	3.87	3.30
PANC02	3.36	3.85	4.07	3.36
PANC02	4.96	5.23	5.59	4.96
PANC02	4.01	5.72	2.65	4.01
NIH/3T3	1.07	6.33	-3.31	1.07
NIH/3T3	0.11	6.66	-3.62	0.11
NIH/3T3	0.66	6.42	-3.36	0.66
NIH/3T3	-0.67	7.45	-3.13	-0.67
NIH/3T3	1.37	7.78	-3.97	1.37
NIH/3T3	1.69	7.34	-3.36	1.69
HPDE6-C7	-17.49	-5.44	-0.59	-17.49
HPDE6-C7	-17.78	-2.34	0.70	-17.78
HPDE6-C7	-17.39	-5.38	-1.55	-17.39
HPDE6-C7	-15.82	-3.40	0.51	-15.82
HPDE6-C7	-16.49	-4.06	0.49	-16.49

Canonical Scores Plot

Fig. S3 Correlations of canonical fluorescence response patterns from the array of channel 1-channel 10 against 4 cell lines. The 95% confidence ellipses for the individual analytes are shown.

Analyte			Re	sults LDA	L		
Cell	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	Group
Du145	12.75	-5.37	2.55	-0.14	-0.95	0.80	4
Du145	11.84	-4.66	2.15	-0.44	-1.98	-0.25	4
Du145	12.56	-5.39	1.55	-2.02	-0.59	-0.27	4
Du145	11.27	-5.68	3.09	-1.49	-2.57	-0.91	4
Du145	11.75	-5.25	3.08	-0.99	-1.62	-1.71	4
Du145	12.72	-3.65	2.85	0.74	0.42	-2.00	4
A549	6.53	4.92	2.82	0.96	0.84	-2.98	2
A549	6.78	3.93	2.12	1.25	1.28	-1.31	2
A549	5.22	7.38	3.17	2.85	1.78	-3.17	2
A549	5.16	7.04	1.23	1.26	1.68	0.59	2
A549	6.14	5.89	0.84	1.33	1.12	0.05	2
A549	5.56	6.68	2.29	2.21	-0.02	0.27	2
PANC-1	1.89	3.33	-0.14	-2.34	-0.46	0.52	6
PANC-1	2.72	4.70	0.95	-3.53	0.59	0.73	6

Table S3 LDA was carried out and resulted in 6 factors of the canonical scores.

PANC-1	6.07	6.37	2.53	-3.18	-1.07	2.61	6
PANC-1	3.74	4.98	1.01	-3.83	-0.28	1.09	6
PANC-1	4.41	3.98	1.73	-1.90	-0.43	2.09	6
PANC-1	1.95	2.84	2.44	-1.37	-1.45	2.65	6
BT549	1.49	0.20	-7.46	-2.91	0.12	-1.97	3
BT549	-1.25	-0.34	-6.13	-1.15	1.90	0.88	3
BT549	0.78	-2.20	-6.24	-2.44	-0.83	-1.31	3
BT549	-0.12	0.23	-6.05	-2.67	0.15	0.65	3
BT549	0.69	0.36	-7.69	-3.63	0.61	-0.55	3
BT549	0.40	-0.07	-7.31	-2.75	0.55	-1.44	3
A375	-12.25	-2.71	3.45	-1.60	1.16	0.13	1
A375	-12.91	-3.44	3.64	-1.97	0.88	-0.50	1
A375	-12.80	-4.22	3.37	-2.02	1.72	-0.39	1
A375	-14.17	-3.89	4.08	-1.81	1.65	-0.48	1
A375	-13.92	-3.59	3.30	-1.24	0.77	0.59	1
A375	-13.83	-3.71	3.92	-1.19	1.10	0.22	1
SK-OV-3	3.03	-2.49	-4.12	2.47	0.29	1.31	7
SK-OV-3	4.11	-3.42	-3.07	4.72	1.97	1.66	7
SK-OV-3	2.62	-3.29	-0.41	2.17	0.11	0.50	7
SK-OV-3	4.79	-3.30	0.74	2.48	2.45	1.80	7
SK-OV-3	4.66	-3.20	-3.00	5.22	-0.73	0.65	7
SK-OV-3	5.51	-4.20	-2.18	5.59	0.66	1.35	7
HPDE6-C7	-13.12	2.54	-0.54	2.84	-0.29	-0.84	5
HPDE6-C7	-12.18	0.25	-0.99	2.99	-0.05	-0.39	5
HPDE6-C7	-13.75	3.96	-0.62	3.28	-3.55	-1.11	5
HPDE6-C7	-11.27	1.34	-2.26	2.42	-2.46	-0.32	5
HPDE6-C7	-12.21	1.66	0.46	1.59	-3.55	0.38	5
HPDE6-C7	-13.34	1.49	-1.15	0.22	-0.91	0.42	5

Canonical Scores Plot

Fig. S4 Correlations of canonical fluorescence response patterns from the array of channel 1-channel 10 against 7 cell lines. The 95% confidence ellipses for the individual analytes are shown.

Table S4 Training matrix of fluorescence response pattern from an array of channel 1channel 10 against different proportion of the HPDE6-C7 to PANC-1. LDA was carried out and resulted in 5 factors of the canonical scores.

Analyte		Fluorescence Response Pattern									
Concentration	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8	CH9	CH10	
100%:0	0.28	0.10	0.05	0.11	-0.05	-0.06	-0.03	0.07	-0.16	-0.18	
100%:0	0.27	0.09	0.00	0.10	-0.11	-0.08	-0.06	0.04	-0.19	-0.22	
100%:0	0.23	0.03	-0.01	0.08	-0.12	-0.09	-0.07	-0.07	-0.20	-0.23	
100%:0	0.22	0.03	-0.03	0.03	-0.12	-0.09	-0.08	-0.11	-0.21	-0.23	
100%:0	0.19	0.02	-0.05	-0.06	-0.14	-0.13	-0.09	-0.18	-0.22	-0.26	
100%:0	0.19	-0.01	-0.08	-0.09	-0.20	-0.20	-0.11	-0.20	-0.22	-0.30	
80%:20%	0.13	0.09	0.03	-0.17	-0.18	-0.12	-0.09	-0.06	-0.22	-0.21	
80%:20%	0.12	-0.03	0.02	-0.17	-0.20	-0.13	-0.10	-0.09	-0.23	-0.24	
80%:20%	0.12	-0.03	0.02	-0.17	-0.21	-0.15	-0.12	-0.16	-0.23	-0.25	
80%:20%	0.11	-0.03	0.00	-0.18	-0.24	-0.20	-0.12	-0.18	-0.23	-0.27	
80%:20%	0.09	-0.05	-0.02	-0.25	-0.27	-0.22	-0.13	-0.24	-0.25	-0.27	

80%:20%	0.06	-0.12	-0.07	-0.30	-0.28	-0.23	-0.14	-0.25	-0.30	-0.32
60%:40%	0.02	0.02	-0.03	0.02	-0.16	-0.16	-0.06	-0.07	-0.17	-0.25
60%:40%	0.01	-0.02	-0.03	0.00	-0.16	-0.18	-0.07	-0.08	-0.21	-0.27
60%:40%	0.00	-0.03	-0.05	-0.02	-0.22	-0.19	-0.07	-0.09	-0.22	-0.27
60%:40%	-0.01	-0.04	-0.05	-0.03	-0.22	-0.20	-0.08	-0.13	-0.22	-0.30
60%:40%	-0.04	-0.08	-0.06	-0.14	-0.23	-0.24	-0.08	-0.15	-0.27	-0.34
60%:40%	-0.06	-0.10	-0.08	-0.17	-0.23	-0.24	-0.08	-0.25	-0.28	-0.34
40%:60%	-0.01	0.00	-0.03	-0.01	-0.17	-0.17	-0.05	0.02	-0.27	-0.28
40%:60%	-0.05	-0.06	-0.05	-0.04	-0.18	-0.18	-0.08	-0.06	-0.28	-0.30
40%:60%	-0.07	-0.15	-0.07	-0.04	-0.20	-0.22	-0.15	-0.09	-0.29	-0.31
40%:60%	-0.08	-0.15	-0.07	-0.05	-0.20	-0.24	-0.16	-0.09	-0.29	-0.32
40%:60%	-0.09	-0.15	-0.08	-0.12	-0.25	-0.28	-0.16	-0.22	-0.30	-0.33
40%:60%	-0.09	-0.16	-0.12	-0.14	-0.26	-0.29	-0.21	-0.24	-0.30	-0.34
20%:80%	-0.08	-0.05	-0.04	0.07	-0.18	-0.19	-0.10	0.10	-0.21	-0.25
20%:80%	-0.11	-0.11	-0.04	0.05	-0.18	-0.23	-0.12	0.06	-0.21	-0.30
20%:80%	-0.11	-0.12	-0.05	0.05	-0.21	-0.25	-0.13	0.04	-0.22	-0.30
20%:80%	-0.14	-0.16	-0.13	-0.03	-0.23	-0.28	-0.14	0.03	-0.23	-0.31
20%:80%	-0.15	-0.17	-0.14	-0.09	-0.24	-0.28	-0.15	0.03	-0.24	-0.34
20%:80%	-0.15	-0.20	-0.17	-0.13	-0.29	-0.28	-0.24	0.03	-0.24	-0.34
0:100%	-0.10	-0.03	-0.07	0.16	-0.15	-0.13	-0.08	-0.02	-0.22	-0.26
0:100%	-0.11	-0.04	-0.07	0.06	-0.15	-0.13	-0.09	-0.10	-0.22	-0.27
0:100%	-0.12	-0.06	-0.10	0.05	-0.17	-0.14	-0.09	-0.13	-0.24	-0.27
0:100%	-0.13	-0.08	-0.11	0.04	-0.19	-0.14	-0.13	-0.16	-0.24	-0.31
0:100%	-0.20	-0.10	-0.11	0.01	-0.21	-0.19	-0.15	-0.16	-0.25	-0.31
0:100%	-0.22	-0.13	-0.12	-0.03	-0.22	-0.29	-0.15	-0.23	-0.30	-0.31

Analyte			Results	LDA		
Concentration	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Group
100%:0	17.46	5.27	3.03	0.29	-0.91	2.00
100%:0	16.48	7.30	3.23	0.96	-0.13	2.00
100%:0	15.13	6.78	1.19	0.22	-0.66	2.00
100%:0	15.81	7.92	0.15	0.53	-0.98	2.00
100%:0	15.80	6.95	0.31	-0.83	-0.39	2.00
100%:0	16.77	5.90	2.62	-1.54	0.73	2.00
80%:20%	13.01	-6.30	-3.46	0.66	-1.21	6.00
80%:20%	13.08	-7.96	-2.18	0.83	-1.59	6.00
80%:20%	13.63	-6.79	-2.59	0.12	-1.08	6.00
80%:20%	13.61	-6.05	-1.01	-0.77	0.00	6.00
80%:20%	13.92	-7.88	-2.58	-0.94	-0.51	6.00
80%:20%	13.14	-5.39	-1.80	0.92	0.67	6.00
60%:40%	-1.90	-0.12	0.77	-4.30	-0.35	5.00
60%:40%	-0.71	0.79	0.72	-2.00	0.71	5.00
60%:40%	-1.64	-2.27	0.14	-2.58	0.38	5.00
60%:40%	-2.08	-0.76	0.28	-3.19	1.47	5.00

60%:40%	-0.03	-1.89	0.25	-1.36	3.28	5.00
60%:40%	-0.72	-1.09	-1.61	-2.35	2.51	5.00
40%:60%	-2.59	0.20	-0.32	1.99	2.38	4.00
40%:60%	-4.05	0.90	-1.38	1.83	1.95	4.00
40%:60%	-3.12	0.44	-0.07	3.86	0.74	4.00
40%:60%	-3.92	0.65	0.26	4.12	0.98	4.00
40%:60%	-1.90	-0.96	-1.31	1.94	1.20	4.00
40%:60%	-1.95	1.88	-0.96	3.03	-0.10	4.00
20%:80%	-10.32	-3.38	1.92	0.50	-0.91	3.00
20%:80%	-11.14	-3.23	4.17	-0.27	0.59	3.00
20%:80%	-10.71	-2.90	4.19	0.14	0.66	3.00
20%:80%	-11.81	-2.22	5.39	-0.65	-1.15	3.00
20%:80%	-11.64	-3.53	5.44	-0.48	-0.47	3.00
20%:80%	-10.24	-4.79	4.72	2.06	-2.70	3.00
0:100%	-14.59	4.48	-1.96	-0.32	-0.87	1.00
0:100%	-12.98	3.13	-3.00	-1.80	-1.31	1.00
0:100%	-13.32	4.13	-3.77	-1.09	-1.49	1.00
0:100%	-13.44	5.17	-3.88	-0.38	-1.11	1.00
0:100%	-17.74	2.11	-3.66	-0.81	-1.10	1.00
0:100%	-15.30	3.52	-3.27	1.66	0.77	1.00

Canonical Scores Plot

Fig. S5 Correlations of canonical fluorescence response patterns from the array of channel 1-channel 10 against different proportion of the HPDE6-C7 to PANC-1. The 95% confidence ellipses for the individual analytes are shown.

Table S5 Training matrix of fluorescence response pattern from an array of 10 channelsagainst 9 cell lines. LDA was carried out and resulted in 8 factors of the canonicalscores.

Analyte				Fluores	cence R	espons	e Patter	n		
Cell	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8	CH9	CH10
Du145	0.21	0.26	0.16	0.10	-0.04	0.01	0.16	0.24	0.19	0.20
Du145	0.18	0.26	0.16	0.09	-0.04	-0.03	0.12	0.19	0.18	0.18
Du145	0.17	0.26	0.15	-0.02	-0.04	-0.05	0.11	0.14	0.16	0.13
Du145	0.13	0.25	0.14	-0.03	-0.12	-0.07	0.10	0.08	0.15	0.09
Du145	0.12	0.25	0.13	-0.06	-0.13	-0.09	0.09	0.05	0.15	0.04
Du145	0.12	0.21	0.09	-0.07	-0.14	-0.13	0.09	-0.02	0.12	-0.04
A549	0.18	0.24	0.13	0.12	0.06	0.04	0.14	0.11	0.33	0.19
A549	0.18	0.20	0.13	0.11	0.05	0.02	0.14	0.10	0.28	0.17
A549	0.13	0.18	0.12	0.10	0.02	-0.03	0.12	-0.07	0.28	0.07
A549	0.12	0.06	0.11	0.03	-0.02	-0.03	0.08	-0.07	0.22	0.06
A549	0.09	0.05	0.11	-0.02	-0.09	-0.06	0.05	-0.09	0.19	-0.01
A549	0.07	0.03	0.02	-0.04	-0.12	-0.10	0.02	-0.19	0.16	-0.03
PANC-1	0.14	0.08	0.10	0.03	-0.02	0.02	0.10	0.24	0.30	0.22
PANC-1	0.14	0.07	0.09	-0.04	-0.03	-0.04	0.09	0.11	0.30	0.21
PANC-1	0.13	0.05	0.08	-0.07	-0.09	-0.06	0.03	-0.06	0.26	0.19
PANC-1	0.07	0.03	0.07	-0.18	-0.12	-0.07	0.02	-0.06	0.23	0.08
PANC-1	0.06	0.02	0.01	-0.18	-0.12	-0.09	0.02	-0.16	0.14	0.03
PANC-1	0.03	-0.02	-0.06	-0.20	-0.16	-0.14	0.02	-0.20	0.09	0.01
BT549	0.09	0.13	0.06	-0.07	0.17	0.10	0.01	0.27	0.16	0.10
BT549	0.15	0.18	0.15	0.11	0.31	0.30	0.18	0.45	0.22	0.27
BT549	0.04	0.06	-0.04	-0.18	0.03	0.02	-0.01	0.21	0.09	0.00
BT549	0.02	-0.01	-0.04	-0.21	0.02	0.01	-0.02	0.11	0.08	-0.01
BT549	0.02	-0.04	-0.05	-0.23	0.00	-0.10	-0.07	0.10	0.07	-0.05
BT549	0.00	-0.06	-0.06	-0.23	-0.06	-0.17	-0.08	0.07	0.04	-0.12
PANC02	0.15	0.18	0.24	0.16	0.19	0.31	0.26	0.33	0.21	0.34
PANC02	0.05	0.06	0.14	-0.03	-0.11	-0.06	0.11	0.21	0.08	0.09
PANC02	0.02	0.01	0.11	-0.05	-0.12	-0.08	0.04	0.07	0.07	0.06
PANC02	0.02	0.00	0.09	-0.10	-0.12	-0.09	0.02	0.07	0.07	0.03
PANC02	-0.03	-0.01	0.07	-0.17	-0.13	-0.16	0.00	0.00	0.03	-0.06
PANC02	-0.04	-0.18	0.06	-0.19	-0.15	-0.30	-0.04	-0.01	-0.01	-0.06
A375	0.04	0.06	-0.05	-0.05	-0.02	-0.02	0.31	0.30	0.24	0.21
A375	0.04	0.08	-0.04	-0.04	-0.02	-0.02	0.32	0.35	0.26	0.23
A375	0.05	0.09	-0.04	-0.04	-0.01	-0.01	0.35	0.39	0.27	0.24
A375	0.05	0.09	-0.04	-0.01	-0.01	-0.01	0.37	0.41	0.29	0.26
A375	0.05	0.09	0.20	0.18	0.00	0.00	0.39	0.41	0.29	0.27
A375	0.06	0.11	0.22	0.20	0.00	0.00	0.41	0.42	0.30	0.28

		0.10	0.01	0 0 -	0.10	0.1.	0 0 7	0.00	0.01	0.00
SK-OV-3	0.05	0.12	-0.01	-0.07	0.13	0.15	0.07	0.06	-0.01	-0.03
SK-OV-3	0.09	0.13	0.00	0.01	0.13	0.15	0.14	0.12	-0.01	-0.02
SK-OV-3	0.11	0.14	0.15	0.13	0.01	0.03	0.18	0.21	0.12	0.09
SK-OV-3	0.15	0.14	0.15	0.13	0.02	0.03	0.23	0.22	0.14	0.12
SK-OV-3	0.10	0.20	0.27	0.28	0.13	0.16	0.16	0.19	0.05	0.04
SK-OV-3	0.13	0.21	0.28	0.29	0.14	0.17	0.21	0.21	0.06	0.05
NIH/3T3	0.01	0.00	-0.06	-0.07	0.10	0.14	0.07	0.06	0.01	-0.02
NIH/3T3	0.01	0.00	-0.05	-0.06	0.11	0.14	0.08	0.07	0.05	0.01
NIH/3T3	0.02	0.03	-0.04	-0.03	0.11	0.14	0.08	0.08	0.06	0.02
NIH/3T3	0.02	0.03	-0.04	-0.01	0.11	0.15	0.10	0.09	0.06	0.05
NIH/3T3	0.05	0.03	0.19	0.20	0.14	0.15	0.10	0.10	0.12	0.06
NIH/3T3	0.06	0.05	0.05	0.06	0.02	0.05	0.07	0.04	0.15	0.17
HPDE6-C7	-0.01	0.02	0.04	0.12	0.06	0.08	0.22	0.19	0.18	0.08
HPDE6-C7	-0.02	0.02	0.03	0.10	0.04	0.04	0.21	0.18	0.13	0.04
HPDE6-C7	0.06	0.12	0.11	0.35	0.18	0.26	0.25	0.44	0.32	0.30
HPDE6-C7	0.05	0.11	0.11	0.26	0.17	0.24	0.23	0.41	0.24	0.23
HPDE6-C7	0.00	0.10	0.10	0.16	0.09	0.23	0.23	0.26	0.23	0.20
HPDE6-C7	0.00	0.04	0.10	0.12	0.09	0.09	0.22	0.24	0.20	0.16

Note: CH: channel;

LDA was carried out and resulted in 8 factors of the canonical scores.

Analyte	Results LDA												
C 11	Factor	Factor	Factor	Factor	Factor	Factor	Factor	Factor					
Cell	1	2	3	4	5	6	7	8	Group				
Du145	11.41	-3.35	3.36	1.48	-0.44	-0.44	-0.89	1.46	5.00				
Du145	10.70	-3.05	2.84	1.49	-0.29	-1.66	-0.86	0.08	5.00				
Du145	11.95	-4.22	3.21	-0.08	0.42	-0.66	-0.56	-0.88	5.00				
Du145	9.74	-3.88	3.83	0.29	-0.34	-2.51	-0.57	-0.52	5.00				
Du145	10.25	-3.05	4.22	0.51	0.60	-2.19	-0.19	-0.38	5.00				
Du145	11.51	-0.92	4.49	1.86	1.35	-0.66	0.28	-0.14	5.00				
A549	6.03	5.84	2.89	0.38	2.50	-1.03	-0.02	-0.80	3.00				
A549	6.56	4.68	2.38	0.89	1.36	0.21	0.05	-0.50	3.00				
A549	4.94	8.34	3.07	1.82	1.95	-0.31	0.80	-2.12	3.00				
A549	5.40	6.74	0.95	-0.35	-0.31	1.46	0.98	0.23	3.00				
A549	6.06	6.04	0.80	-0.50	0.02	0.73	1.64	1.40	3.00				
A549	5.13	7.14	1.21	0.88	-1.30	0.19	0.15	0.02	3.00				
PANC-1	2.18	2.59	-0.01	-3.29	0.63	-0.26	0.34	2.53	7.00				
PANC-1	3.28	3.40	1.18	-4.40	0.30	0.68	0.16	0.56	7.00				
PANC-1	5.91	4.70	1.06	-4.36	-2.60	0.35	-0.74	0.23	7.00				
PANC-1	3.89	3.58	0.76	-5.60	-0.62	0.08	0.62	1.03	7.00				
PANC-1	4.40	3.21	1.04	-2.85	-2.15	0.68	-0.59	-0.38	7.00				
PANC-1	1.85	2.42	1.29	-1.41	-3.43	0.43	-1.71	-1.43	7.00				

BT549	4.18	-1.76	-4.76	-2.48	4.15	-0.92	-0.14	-1.23	4.00
BT549	1.10	-1.95	-4.04	-1.52	2.86	1.52	-0.25	0.54	4.00
BT549	2.59	-2.83	-3.86	-2.02	3.16	-1.19	-0.47	0.83	4.00
BT549	2.04	-1.25	-4.14	-2.99	1.69	0.51	-0.32	0.81	4.00
BT549	3.73	-1.68	-4.64	-3.12	2.85	0.49	0.33	-0.44	4.00
BT549	3.26	-1.41	-4.01	-1.96	3.17	0.14	0.80	-0.37	4.00
PANC02	0.07	-3.05	-1.05	-1.63	-2.76	1.66	-0.45	1.30	8.00
PANC02	0.71	-7.04	0.18	-1.46	-2.16	-0.74	0.72	1.01	8.00
PANC02	0.56	-3.71	-1.35	-1.82	-3.06	-1.25	0.42	0.18	8.00
PANC02	1.58	-3.65	-1.46	-2.19	-2.05	-0.77	0.55	0.32	8.00
PANC02	-0.04	-4.03	-1.33	-2.31	-0.99	-1.10	1.11	-1.62	8.00
PANC02	-1.23	-4.59	-3.19	-3.55	-1.88	1.85	1.98	-2.46	8.00
A375	-12.09	-1.17	4.43	-0.80	0.80	1.07	-1.30	-0.18	2.00
A375	-12.86	-1.73	4.78	-0.96	1.30	0.53	-1.28	-0.20	2.00
A375	-12.60	-2.33	5.00	-0.95	1.78	1.21	-1.13	0.19	2.00
A375	-14.09	-1.87	5.48	-0.72	1.65	1.13	-1.19	0.08	2.00
A375	-13.72	-2.77	4.58	-0.45	-0.21	0.72	1.80	-0.12	2.00
A375	-13.79	-2.69	5.32	-0.45	0.07	0.73	2.11	-0.24	2.00
SK-OV-3	4.17	-2.02	-2.99	2.98	0.17	0.92	-1.68	-0.94	9.00
SK-OV-3	4.88	-1.60	-1.58	5.33	0.38	2.41	-1.38	0.37	9.00
SK-OV-3	2.66	-1.88	0.85	3.07	0.00	0.31	0.70	0.76	9.00
SK-OV-3	4.77	-1.44	2.39	3.20	-0.14	2.72	0.66	1.55	9.00
SK-OV-3	4.96	-2.24	-2.03	5.86	-0.65	-0.46	1.66	-0.15	9.00
SK-OV-3	5.68	-2.70	-0.83	6.31	-0.69	0.93	1.70	0.32	9.00
NIH/3T3	-1.85	0.51	-4.21	2.03	-0.56	1.20	-1.31	0.22	1.00
NIH/3T3	-3.35	1.13	-4.01	1.11	-0.56	0.97	-1.25	-0.22	1.00
NIH/3T3	-2.78	1.50	-3.68	1.69	-0.31	0.55	-1.34	-0.11	1.00
NIH/3T3	-3.55	1.20	-3.48	1.82	-1.09	0.63	-1.71	-0.35	1.00
NIH/3T3	-2.02	3.08	-4.48	1.96	-1.30	0.37	1.74	-0.13	1.00
NIH/3T3	-1.64	2.17	-1.79	-0.13	-3.17	-1.30	-1.46	-1.32	1.00
HPDE6-C7	-12.33	3.03	-0.57	2.10	0.56	-0.63	0.69	-0.29	6.00
HPDE6-C7	-11.22	1.04	-0.42	3.08	0.27	-0.09	0.56	-0.73	6.00
HPDE6-C7	-13.69	4.01	-2.45	2.18	0.28	-3.49	-0.21	1.40	6.00
HPDE6-C7	-10.66	1.25	-2.88	1.77	0.48	-2.24	0.05	1.31	6.00
HPDE6-C7	-12.51	1.63	-1.32	0.31	-1.29	-2.88	-0.23	0.76	6.00
HPDE6-C7	-12.09	0.61	-1.05	-0.05	-0.36	-0.57	0.65	-1.21	6.00

Canonical Scores Plot

Fig. S6 Correlations of canonical fluorescence response patterns from the array of channel 1-channel 10 against 9 cell lines. The 95% confidence ellipses for the individual analytes are shown.

Table S6 Detection and identification of unknown samples in PBS using LDA from the array of 10 channels. According to the verification, 35 of 36 unknown samples were correctly identified, representing an accuracy of 97.2%.

_

Unknown	Fluorescence Response Pattern											
Samples	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8	CH9	CH10		
1	0.26	0.33	0.24	0.21	0.08	0.14	0.29	0.52	0.31	0.35		
2	0.25	0.33	0.22	0.17	0.00	0.13	0.20	0.41	0.30	0.28		
3	0.23	0.27	0.22	0.16	-0.02	0.07	0.19	0.28	0.26	0.23		
4	0.22	0.26	0.18	0.12	-0.02	0.04	0.19	0.26	0.20	0.22		
5	0.28	0.31	0.32	0.38	0.15	0.13	0.28	0.42	0.44	0.27		
6	0.27	0.28	0.29	0.26	0.14	0.11	0.26	0.33	0.41	0.27		
7	0.21	0.25	0.22	0.18	0.13	0.10	0.23	0.26	0.39	0.24		
8	0.20	0.24	0.20	0.16	0.12	0.10	0.20	0.18	0.38	0.21		
9	0.20	0.33	0.24	0.10	0.11	0.21	0.21	0.43	0.37	0.47		
10	0.20	0.28	0.23	0.07	0.09	0.17	0.20	0.37	0.37	0.39		
11	0.18	0.12	0.20	0.05	0.05	0.07	0.16	0.30	0.34	0.32		
12	0.16	0.09	0.10	0.04	-0.02	0.04	0.11	0.25	0.34	0.32		
13	0.05	0.06	0.06	-0.09	0.14	0.05	-0.01	0.22	0.12	0.09		
14	0.15	0.18	0.12	0.04	0.30	0.22	0.10	0.43	0.22	0.22		
15	0.12	0.14	0.11	0.02	0.25	0.15	0.08	0.39	0.21	0.18		
16	0.10	0.13	0.10	-0.03	0.19	0.11	0.07	0.36	0.20	0.15		
17	0.07	0.12	0.17	-0.01	-0.03	-0.04	0.12	0.24	0.09	0.12		

18	0.13	0.17	0.23	0.08	0.09	0.08	0.25	0.29	0.15	0.26
19	0.11	0.14	0.22	0.08	0.03	0.07	0.22	0.29	0.12	0.21
20	0.07	0.13	0.22	0.01	-0.03	0.05	0.13	0.27	0.10	0.18
21	0.03	0.07	0.06	0.04	-0.08	-0.08	0.25	0.29	0.21	0.21
22	0.03	0.08	0.06	0.06	-0.08	-0.08	0.27	0.32	0.21	0.22
23	0.04	0.08	0.06	0.07	-0.08	-0.08	0.27	0.33	0.23	0.26
24	0.04	0.09	0.07	0.07	-0.08	-0.08	0.27	0.34	0.29	0.27
25	0.09	0.12	0.13	0.12	0.00	0.02	0.15	0.15	0.01	0.01
26	0.10	0.13	0.14	0.13	0.01	0.02	0.17	0.19	0.01	0.01
27	0.09	0.17	0.01	0.03	0.13	0.15	0.15	0.12	0.00	-0.01
28	0.10	0.20	0.04	0.03	0.13	0.16	0.16	0.16	0.03	0.03
29	0.03	0.03	0.05	0.04	0.01	0.02	0.05	0.03	0.11	0.06
30	0.04	0.04	0.05	0.05	0.01	0.03	0.05	0.04	0.13	0.11
31	0.04	0.05	0.05	0.05	0.01	0.04	0.06	0.04	0.15	0.14
32	0.05	0.03	0.20	0.20	0.14	0.16	0.14	0.10	0.13	0.10
33	-0.02	-0.02	0.03	0.09	0.03	0.03	0.20	0.18	0.12	0.04
34	-0.02	-0.05	0.02	0.06	0.00	0.01	0.19	0.03	0.10	0.03
35	-0.02	-0.11	0.01	-0.01	-0.01	-0.06	0.15	0.00	0.10	0.00
36	-0.04	-0.13	-0.01	-0.09	-0.02	-0.17	0.11	-0.09	0.07	-0.02

				Result	s LDA				А	nalyte
Unknown	Factor	C	Verificatio							
Samples	1	2	3	4	5	6	7	8	Group	n
1	8.28	-4.62	3.90	0.64	1.83	0.20	-0.18	3.10	5.00	Du145
2	11.78	-2.58	3.31	0.14	1.58	-1.25	0.08	4.65	5.00	Du145
3	11.29	-0.99	3.64	0.84	0.37	0.00	0.29	3.16	5.00	Du145
4	11.27	-3.31	3.58	1.54	-0.62	0.20	-0.73	2.03	5.00	Du145
5	7.43	5.54	3.57	2.38	5.43	0.54	3.03	2.63	3.00	A549
6	8.62	4.93	3.75	0.31	4.31	1.96	2.38	1.82	3.00	A549
7	4.70	4.98	3.08	-0.72	3.91	0.62	1.53	0.40	3.00	A549
8	5.03	6.82	2.83	-0.43	3.84	0.41	1.31	-0.19	3.00	A549
9	3.39	-4.24	1.73	-5.49	-0.23	-2.98	-1.55	0.04	8.00	PANC02
10	4.15	-2.13	2.03	-5.37	0.77	-1.34	-0.39	1.11	7.00	PANC-1
11	3.72	0.71	0.62	-5.30	0.31	1.36	0.79	2.04	7.00	PANC-1
12	2.48	2.60	0.35	-4.77	-0.82	-0.42	-0.57	2.48	7.00	PANC-1
13	1.71	-2.40	-5.28	-3.07	2.57	-0.59	0.01	-1.96	4.00	BT549
14	3.86	-2.15	-4.93	-2.27	4.89	0.94	-0.01	-0.51	4.00	BT549
15	1.96	-1.81	-4.67	-2.46	4.64	0.11	0.30	-1.02	4.00	BT549
16	2.55	-2.49	-3.92	-3.22	4.77	0.20	0.61	-0.75	4.00	BT549
17	2.12	-7.76	-0.23	-1.40	-0.97	-0.63	0.56	-0.73	8.00	PANC02
18	1.30	-6.76	1.71	-1.04	-1.88	2.29	0.13	-1.33	8.00	PANC02
19	2.18	-7.19	0.95	-0.62	-2.37	1.52	0.38	0.34	8.00	PANC02
20	1.40	-8.38	-0.79	-2.54	-2.53	-1.20	0.51	0.61	8.00	PANC02

21	-9.84	-3.37	3.46	-0.49	-0.98	-1.08	-0.44	-0.81	2.00	A375
22	-10.55	-3.49	3.62	-0.13	-0.78	-1.24	-0.34	-0.61	2.00	A375
23	-11.25	-3.68	3.73	-0.74	-1.18	-1.49	-0.65	-0.99	2.00	A375
24	-11.99	-1.54	4.04	-1.49	-0.06	-2.04	-0.22	-0.62	2.00	A375
25	5.09	-3.78	0.13	5.11	-1.25	1.13	0.40	0.68	9.00	SK-OV-3
26	4.99	-4.40	0.37	5.41	-0.73	1.37	0.57	0.90	9.00	SK-OV-3
27	5.20	-1.72	-0.83	5.74	0.54	1.78	-1.53	-0.07	9.00	SK-OV-3
28	5.22	-2.80	-0.49	4.83	0.77	1.04	-1.57	-0.28	9.00	SK-OV-3
29	-1.35	2.03	-2.54	0.73	-1.83	-1.31	-0.42	-0.75	1.00	NIH/3T3
30	-2.27	1.97	-2.30	0.22	-2.47	-1.88	-0.96	-1.34	1.00	NIH/3T3
31	-2.17	2.20	-2.14	-0.11	-2.75	-1.68	-1.12	-1.11	1.00	NIH/3T3
32	-3.59	2.81	-3.53	1.59	-2.09	0.92	1.49	-0.62	1.00	NIH/3T3
33	-11.07	1.23	-0.89	2.62	0.14	0.45	0.82	-0.24	6.00	HPDE6-C7
34	-10.30	3.17	-0.27	2.54	-2.27	1.37	0.33	-0.61	6.00	HPDE6-C7
35	-8.89	3.36	-0.99	0.86	-1.62	2.96	0.98	-1.14	6.00	HPDE6-C7
36	-9.11	2.28	-0.45	-0.06	-1.62	3.17	0.65	-4.31	6.00	HPDE6-C7

4. Various Data Split Ratios

Fig. S7 The curve depicting the relationship between average accuracy and the percentage of the test set.

5. Train and Test Accuracy	in Different Model.
----------------------------	---------------------

Signal Channel (RF-RFF-MLP)										Accuracy
			Jigiliar C	maimer	un ni		.)			Tieculacy
1	2	3	4	5	6	7	8	9	10	0.96
1	2	3	4	5	7	8	9	10	/	0.98
1	2	4	5	7	8	9	10	/	/	0.97
1	2	4	5	7	8	9	/	/	/	0.95

Table S7 Training and test accuracy in different model.

1	2	5	7	8	9	/	/	/	/	0.89
1	2	5	7	9	/	/	/	/	/	0.84
2	5	7	9	/	/	/	/	/	/	0.82
2	7	9	/	/	/	/	/	/	/	0.66
2	7	/	/	/	/	/	/	/	/	0.52
7	/	/	/	/	/	/	/	/	/	0.28

 Table S8 Train and test accuracy in different model.

	10 Featur	res Model	7 Feature	es Model	6 PC 1	Model
Model	Train	Test	Train	Train Test		Test
Name	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy
	(%)	(%)	(%)	(%)	(%)	(%)
RF	100.0	83.7	100.0	82.0	100.0	92.7
LRG	100.0	96.0	98.2	92.1	100.0	96.9
SVM	99.0	88.3	97.5	84.8	100.0	98.8
KNN	91.3	71.8	89.7	74.6	97.5	90.6
DT	100.0	63.6	100.0	65.4	100.0	85.1
GNB	85.8	68.4	82.2	64.7	99.1	89.7
LDA	100.0	99.4	98.4	94.3	98.8	97.7
BNB	68.1	54.5	69.3	55.8	89.2	78.2
GPC	100.0	91.6	99.7	89.7	100.0	97.2

6.CCK-8 Assay

Fig. S8 Curve of cell viability versus cell concentration in CCK-8 assay.