Supporting information

A Step Towards Non-Invasive Diagnosis of Diabetes Mellitus Using In-Situ Synthesized MOF-MXene Hybrid Material with Extended Gate Field-Effect Transistor Integration

Mallikarjuna Swamy Shabanur Matada^a, Rahul S. Ghuge^a, Surya Velappa Jayaraman^{b,c}, Corrado Di Natale^{d*}, Yuvaraj Sivalingam^{a,e*}

^aLaboratory of Sensors, Energy and Electronic devices (Lab SEED), Department of Physics and Nanotechnology, SRMIST, Kattankulathur 603203, Tamil Nadu, India.

^bNovel, Advanced, and Applied Materials (NAAM) Laboratory, Department of Physics and Nanotechnology, SRMIST, Kattankulathur 603203, Tamil Nadu, India.

^cNew Industry Creation Hatchery Center (NICHe), Tohoku University, Aoba-ku, Sendai 980-8579, Miyagi, Japan.

^dDepartment of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy.

^eComputer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.

* Corresponding author e-mail: Yuvaraj Sivalingam – <u>yuvaraj.sst@gmail.com</u>, yuvaraj.sivalingam@kaust.edu.sa; Corrado Di Natale - <u>dinatale@uniroma2.it</u>

Fig. S1 (a and b): (a) Output curve with V_d in the range from 0 to 0.1 V with the varying V_g from 0 to 0.8 V and (b) Transfer curve obtained by sweeping V_g from 0 to 0.8 V (V_d is 0.1V) of n-MOSFET characteristics; Fig. S1 (c and d): Output curve of MOSFET after extending with Ni_{BDC-MXene}/CP electrode (c) before cycling and (d) after 20 cycles in 1X PBS.

Fig. S2: XRD patterns of MXene $(Ti_3C_2T_x)$ and MAX phase (Ti_3AlC_2) .

Fig. S3: (a-d) HR-SEM images of $Ti_3C_2T_x$ at 10 $\mu M,$ 5 $\mu M,$ 3 μM and 1 μM magnifications.

Fig. S4: (a) HR-SEM image of Ni_{BDC} and its (b-d) elemental colour mapping of C, Ni, and O respectively; (e) EDAX spectrum and (f) information extracted from the EDAX spectrum.

Fig. S5: (a) HR-SEM image of Ni_{BDC-MXene} and its (b-d) elemental colour mapping of C, O, F, Ti and Ni, respectively; (e) EDAX spectrum and (f) information table extracted from the EDAX spectrum.

Fig. S6: Transfer characteristics of $Ni_{BDC-MXene}/CP$ (a-b) in the presence different conditions like baseline, in the presence of 40 μ M and 200 μ M of glucose (c-d) Cyclic stability of $Ni_{BDC-MXene}/CP$.

Fig. S7: (a) Lattice fringe pattern of $Ni_{BDC-MXene}$ obtained from HR-TEM (b) Impact of $Ni_{BDC-MXene}$ weight loading on carbon paper (CP) towards 10 μ M glucose.