Supplementary Information (SI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2024

SUPPORTING INFORMATION

For

Modified perylene diimide for *femto* molar level detection of glucose: Smartphone assisted colorimetric glucose detection kits

Rajdeep Kaur^a, Sanjeev Kumar^b, Siyu Liu^b, Kapil Kumar^b, Junsheng Chen^b and Prabhpreet Singh^{a*}

^aDepartment of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar

143001 (pb.)-India

^bNano-Science Center & Department of Chemistry, University of Copenhagen, Copenhagen, 2100 Denmark

E-mail: prabhpreet.chem@gndu.ac.in; M: +91 8427101534

Figure S1. ¹H NMR spectrum of PH1.

Figure S2. ¹³C NMR spectrum of PH1.

Figure S3. ¹³C DEPT NMR spectrum of PH1.

Figure S4: XRD spectrum of PH1.

Figure S4a: TGA graph of PH1

Figure S5. Plot of (left) A_{0-0}/A_{0-1} and (right) degree of aggregation (α_{agg}) versus percentage of water in a DMSO.

Figure S6. Daylight photographs of PH1 (10 μ M) in (top) different polarity solvents and (bottom) upon addition of different water fractions in DMSO.

Figure S7. (a) Absorbance (at different wavelengths) and (b) emission plot of PH1 upon addition of different concentrations of H_2S .

Figure S8: The fluorescence lifetime of PH1.

Figure S9. Bar graph of PH1 (10 µM) upon addition of 1mM concentration of different anions.

Figure S10. (a) I-V plot of PH1 (10 μ M) upon addition of H₂S. (b) Bar graph of I-V plot showing stability of **PH1**- radical anion after different interval of time.

Figure S11: (a) Absorbance and (b) Emission spectra of PH1⁻ (generated in-situ upon addition of 1mM of H₂S) upon addition of different concentration of NOBF₄; [Insets of (a) and (b)] colour change photographs of PH1⁻ upon addition of 100 μ M concentrations of NOBF₄. Plots of (c) Absorbance (d) emission intensity versus concentration of NOBF₄ to calculate the lowest limit of detections.

Figure S12. Bar graph showing revival of (a) emission (b) absorbance intensity upon addition of H_2O_2 to PH1⁻ radical anion

Figure S13. (a) Plot of absorbance intensity versus concentration of H_2O_2 and (b) Bar graph of PH1-(generated in-situ upon addition of 1 mM of H_2S) showing interference of water upon addition of H_2O_2 .

Figure S14: (a,b) Absorbance spectrum of 3,3',5,5'-tetramethylbenzidine (TMB) upon addition of different concentration of H₂O₂.

Figure S15: The absorbance spectra of PH1 upon addition of H_2S , glucose oxidase and glucose in the whole blood.

 Table S1: The comparison of PDI-based material with other materials.

Citation	Radical anion	Solvent mixture	Analytes	LOD(M)	Application
Present manuscript	YES	20% HEPES Buffer	H ₂ O ₂ / Glucose/	170 fM/ 85 fM/	Biochemical assay
Dyes and Pigments 165 (2019) 319–326	Yes	NMP	Ag ⁺	0.05 mol/L	NA
Chem. Commun., 2023, 59, 12775	No	60% PBS buffer	H ₂ O ₂	1.37 μM	Live cell
ACS Appl. Mater. Interfaces 2023, 15, 39–47	No	1% PBS	H ₂ O ₂	87 nM	In-vivo, In- vitro imaging
Sensors and Actuators: B. Chemical 406 (2024) 135452	No	1% PBS	H_2O_2 (in presence of A β 42 fibrils)	38.8 nM	In-vivo, In- vitro imaging

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 304 (2024) 123394	No	70% PBS buffer	H ₂ O ₂	3.01 μM	In cells
ACS Omega 2021, 6, 14819–14823	No	PBS Buffer	H ₂ O ₂	0–200 μM	NA
Talanta 269 (2024) 125459	No	PBS buffer	H ₂ O ₂	25.2 nM	In-vivo, in- vitro imaging
Talanta 271 (2024) 125669	No	EtOH/PB solution (1:1, v/v)	H ₂ O ₂	62 nM	In-vivo, in- vitro imaging