1	Dual-Functional PCN-242 (Fe ₂ Co) MOF for Sensitive Bacterial Endotoxin
2	Detection
3	Sivasankar Kulandaivel, ^a Yung-Kang Lu, ^a Chia-Her Lin* ^b and Yi-Chun Yeh* ^a
4	^a Department of Chemistry, National Taiwan Normal University, Taipei 11677,
5	Taiwan.
6	^b Department of Chemistry, National Tsing Hua University, Hsinchu 300044,
7	Taiwan.
8	
9	
10	
11	*Corresponding authors: Chia-Her Lin and Yi-Chun Yeh
12	
13	

14 Table S1: The ICP-MS data validation for Fe₂Co cluster before and after MOF

- 15 synthesis.

	Fe (wt%)	Co (wt%)	Fe: Co ratio in
			the cluster
$[Fe_2Co(\mu_3-O) (CH_3COO)_6]$ cluster	15.50	8.568	1.81: 1
PCN-242 (Fe ₂ Co) MOF	11.40	4.467	2.55: 1

19 Table S2: Comparison of steady-state kinetics of PCN-242(Fe₂Co) with HRP and

20 other iron-based MOFs for POD-like enzymatic activity.

Substrate	Samples	Km (mM)	Vmax	References
Substitute	Samples			References
			$(10^{-8} \text{ M S}^{-1})$	
H_2O_2	HRP enzyme	3.7	8.71	1
	Fe-MOF-GOx	1.3	2.5	2
	hemin@MIL-53(Al)-	10.90	8.98	3
	NH ₂			
	NH ₂ -MIL-88B(Fe)	0.91	-	4
	Fe/Co-MIL-88(NH ₂)	0.71	-	4
	Fe/Co-TPY-MIL-	0.69	9.8	5
	88(NH ₂)			
	PCN-242 (Fe ₂ Co) MOF	0.607	7.01	This work

26 Figure S1: The schematic structure of the premade $[Fe_2Co(\mu_3-O)]$ cluster is used as

27 the starting material for PCN-242 (Fe₂Co) MOF.

- 28
- 29

30

31 Figure S2: (a) Nitrogen adsorption-desorption isotherm of PCN-242(Fe₂Co) MOF. (b)

32 Incremental pore surface area distribution from NLDFT, highlighting pore structure

- 33 characteristics.
- 34
- 35

- 38 Figure S3: The synthesized PCN-242 (Fe₂Co) MOF FE-SEM image.

41 Figure S4: The PXRD pattern of PCN-242 (Fe₂Co) MOF soaked in an acidic buffer
42 one day at pH 3.6.

43 Figure S5: The various reaction systems used to assess the peroxidase-like catalytic
44 activity of PCN-242 (Fe₂Co).

45

46 Figure S6. The peroxidase-like catalytic activity of PCN-242 (Fe₂Co) was optimized

47 by varying the concentration of TMB.

49 Figure S7. The peroxidase-like catalytic activity of PCN-242 (Fe₂Co) was optimized

- 50 by varying the concentration of MOF in the solution.
- 51

53

54 Figure S8. The peroxidase-like catalytic activity of PCN-242 (Fe₂Co) was conducted

55 at various temperatures.

- 58 Figure S9. Peroxidase-like catalytic activity comparison of various iron-based MOFs.
- 59 From left to right: 1) PCN-242(Fe₂Co), 2) PCN-333(Fe), 3) MIL-88B(Fe) (1,4-NDC),
- 60 4) MOF-919(Fe), 5) MIL-100(Fe), and 6) MIL-88B(Fe) (1,4-BDC).
- 61

63 Figure S10. The zeta potential analysis of PCN-242 (Fe₂Co) MOF before and after

- 64 LPS addition.
- 65
- 66

68 Figure S11. Evaluation of PCN-242 MOF peroxidase activity across different

- 69 reaction media, highlighting the impact of varying conditions on catalytic
- 70 performance.

73 Figure S12. The potential interference compounds test for LPS selectivity analysis.

Figure S13. FT-IR spectra showing the characteristic vibrational modes of PCN-81 242(Fe₂Co) MOF before and after modification with GOx.

83 Figure S14. GOx@PCN-242 (Fe₂Co) was utilized for glucose detection and for

84 recycling the enzyme-MOF composite.

91 Figure S15. Glucose detection in diluted orange juice and sports drinks using the

92 GOx@PCN-242 Fe₂Co MOF cascade reaction.

93 **References:**

94	1.	L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D.
95		Yang and S. Perrett, Nature nanotechnology, 2007, 2, 577-583.

96 2. W. Xu, L. Jiao, H. Yan, Y. Wu, L. Chen, W. Gu, D. Du, Y. Lin and C. Zhu, ACS
 97 applied materials & interfaces, 2019, 11, 22096-22101.

- 98 3. F.-X. Qin, S.-Y. Jia, F.-F. Wang, S.-H. Wu, J. Song and Y. Liu, *Catalysis*99 Science & Technology, 2013, 3, 2761-2768.
- Q. Jiang, Y. Xiao, A. N. Hong, Z. Gao, Y. Shen, Q. Fan, P. Feng and W.
 Zhong, ACS Applied Materials & Interfaces, 2022, 14(37), 41800-41808.
- 102 5. Q. Jiang, Y. Xiao, A. N. Hong, Y. Shen, Z. Li, P. Feng and W. Zhong, ACS
- 103 Sensors, 2023, **8**, 1658-1666.