Supporting Information

Cellulose-based bioactive material and turmeric impregnated flexible and biocompatible scaffold for bone tissue engineering application

Shital S. Shendage,^a Kranti Kachare,^a Kajal Gaikwad,^b Shivaji Kashte,^b Fu-Der Mai^c, Anil Vithal Ghule^{a,*}

^aGreen Nanotechnology Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416004, India

^bDepartment of Stem Cell and Regenerative Medicine, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Institution Deemed to Be University), Kolhapur, India

^cDepartment of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 11031. Taiwan

*Author for correspondence: Anil V. Ghule; avg_chem@unishivaji.ac.in

Supporting Information

Supporting Information (5 pages) is available from the RSC Online Library or the author.

Fig. S1. a) Synthesis of Tm powder (cleaning, chopping, boiling (for B-Tm), drying, and grinding process) b) UV-visible spectra of the UB-Tm, B-Tm, and commercial Tm. Antibacterial activity of UB-Tm and B-Tm against c) *E. coli* and d) *S. aureus* bacteria.

Fig. S2. TGA thermograms of CF, BM-CF, and BM-Tm-CF.

Fig. S3. a) Tensile strength study of CF, Tm-CF, BM-CF, and BM-Tm-CF. Images taken during tensile testing b) CF c) Tm-CF d) BM-CF e) BM-Tm-CF. n = 3, p < 0.05 at *p \leq 0.05, **p \leq 0.01, ***p \leq 0.001 by one-way analysis of variance (ANOVA) with Dunnet comparison test.

Fig. S4. Corresponding angiogenesis images for control, 70S30C BM, CF, Tm-CF, BM-CF, and BM-Tm-CF as a function of time obtained after processing the images using ImageJ software (Mexican Hat Filter).

Fig. S5. SEM images of BM-Tm-CF a) and a') before and b) and b') after 14 days of immersion in SBF solution.

Table S1. EDS elemental composition of CF, BM-Tm-CF, and BM-Tm-CF after 14 days of bioactivity study in SBF solution.

Fig. S1. a) Synthesis of Tm powder (cleaning, chopping, boiling (for B-Tm), drying, and grinding process) b) UV-visible spectra of the UB-Tm, B-Tm, and C-Tm. Antibacterial activity of UB-Tm, B-Tm, and C-Tm against c) *E. coli* and d) *S. aureus* bacteria.

Fig. S2. TGA thermograms of CF, BM-CF, and BM-Tm-CF.

Fig. S3. a) Tensile strength study of CF, Tm-CF, BM-CF, and BM-Tm-CF. Images taken during tensile testing b) CF c) Tm-CF d) BM-CF e) BM-Tm-CF. n = 3, p < 0.05 at *p \leq 0.05, **p \leq 0.01, ***p \leq 0.001 by one-way analysis of variance (ANOVA) with Dunnet comparison test.

Fig. S4. Corresponding angiogenesis images for control, 70S30C BM, CF, Tm-CF, BM-CF, and BM-Tm-CF as a function of time obtained after processing the images using ImageJ software (Mexican Hat Filter).

Fig. S5. SEM images of BM-Tm-CF a) and a') before and b) and b') after 14 days of immersion in SBF solution.

	CF		BM-Tm-CF		BM-Tm-CF (14 days)	
Element	Wt %	Atomic %	Wt %	Atomic %	Wt %	Atomic %
С	51.08	58.17	64.33	71.10	42.59	53.82
0	48.92	41.83	34.18	28.31	41.70	39.56
Na			0.21	0.12	0.20	0.13
Si			0.29	0.14	0.20	0.11
Са			0.99	0.33	10.08	3.82
Р					5.24	2.57
Total:	100.00	100.00	100.00	100.00	100.00	100.00

 Table S1. EDS elemental composition of CF, BM-Tm-CF, and BM-Tm-CF after 14 days of bioactivity study in SBF solution.