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ESI. 1: EXPRESSIONS FOR DEGREE OF SUBSTITUTION 

Habibi et al. suggested an expression for the calculation of the fraction of chains exposed on the 

surface of the nanocrystals.1 The total number of chains at the surface, denoted by 𝑛𝑆, is determined 

by counting the rods around the edge. This corresponds to twice the width (L2) and twice the height 

(L1) divided by their respective plane spacing distance, 𝑑(110) and 𝑑(110). The total number of 

chains, ∑ 𝑛,  is given by the cross sectional area of the rod divided by the cross sectional area of 

half the unit cell (𝑑(110) 𝑑(110)), which contains a single chain. This calculation simplifies to eqn 

(S1) below: 

 𝑅𝐶 =
𝑛𝑆

∑ 𝑛
=

2 (
𝐿1

𝑑(110)
) + 2 (

𝐿2

𝑑(110)
)

𝐿1𝐿2

𝑑(110) 𝑑(110)

= 2 (
𝑑(110)

𝐿2
) + 2 (

𝑑(110)

𝐿1
) (𝑆1) 

The edge of the rod can be thought of as being a cellulose chain with tg hydroxymethyl 

conformation which is held by intramolecular hydrogen bonding between O3/O5 and O2/O6 

hydroxyl groups. Because of the two-fold helical twisting of subsequent anhydroglucose units, the 

hydroxymethyl and secondary hydroxyl groups point out of the crystal on alternating AGU units. 

Some 13C-NMR evidence that shows that there could be a certain amount of gg conformation of 

the hydroxyl groups at the surface however these contributions are small.2 

To determine the degree of grafting on CNC surface, we must first express the number of 

hydroxyl groups at the surface before chemical modification. The number of OH moles per gram 

on the surface, 𝑁𝑂𝐻, of the CNC is expressed using eqn (S2).  
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 𝑁𝑂𝐻 =
𝑛1 + 𝑛2

ρ𝑁𝐴𝐿1𝐿2𝑐
(

𝐿1 + 𝐿2

𝑑(110)
+

𝐿1 + 𝐿2

𝑑(110)

) + 2 (ρ𝑁𝐴𝐿3𝑑(110)𝑑(110))
−1

 (𝑆2) 

where 𝑛1 is the number of primary hydroxyl groups facing (110) (or (110)) in the unit cell and 𝑛2 

is the number of secondary hydroxyl groups facing (110) (or (110)) in the unit cell. If we consider 

the chains at the edge of the rods to retain a tg conformation similar to the bulk, then 𝑛1 = 1 and 

𝑛2 = 2. There are two chains in the unit cell, but since these are alternating this results in half the 

total amount of exposed hydroxyl groups at the surface. The other parameters include, 𝑁𝐴, 

Avogadro’s constant, c the lattice parameter, and ρ the cellulose density. The first term of eqn (S2) 

corresponds to the hydroxyl groups located around the edges of the nanocrystal, while the second 

term corresponds to the terminating hydroxyl groups located at the ends of nanocrystal. The 

terminating hydroxyl groups correspond to the ones located at C1 and C4. Notably, the number of 

terminating hydroxyl groups per gram of cellulose is inversely proportional to the length 𝐿3 of the 

crystal. However, due to the large aspect ratio 𝐿3 𝐿1⁄  of the CNC, the terminating hydroxyl groups 

are a very small percentage of the total amount. 

The degree of surface substitution, 𝐷𝑆𝑠𝑢𝑟𝑓, is expressed by the number of modified moles per 

gram at the surface, 𝑁𝑚𝑜𝑑, divided by the total number of available hydroxyl groups, 𝑁𝑂𝐻. 𝑁𝑚𝑜𝑑 

can be determined experimentally through conductometric titration. The total degree of 

substitution, 𝐷𝑆 is calculated as the product of the ratio of surface chains, 𝑅𝐶, multiplied by 

𝐷𝑆𝑠𝑢𝑟𝑓. These equations are expressed in eqn (S3) and eqn (S4): 

𝐷𝑆𝑠𝑢𝑟𝑓 =
𝑁𝑚𝑜𝑑

𝑁𝑂𝐻
 (𝑆3) 

𝐷𝑆 = 𝑅𝐶  𝐷𝑆𝑠𝑢𝑟𝑓 (𝑆4) 
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ESI. 2: DEGREE OF SUBSTITUTION – CONDUCTOMETRIC TITRATION 

The surface charge density is determined by conductometric titration. A 15 mL sample of CNC 

suspension at 0.86 wt. % was passed through an H+ ion exchange column before measurement. 

The suspension was held at 25 °C and a conductimetry probe was added to the suspension to track 

the conductivity. An aqueous NaOH solution (0.01 M) was added at a feeding rate of 0.1 mL/min 

with continuous stirring. The change in conductivity was recorded using a conductivity meter 

(Horiba Ltd., DS-51). The neutralization of free H⁺ ions occurs through the addition of NaOH, 

forming Na⁺ ions which bind to the CNC sulfate groups. This leads to a decrease in the 

concentration of positively charged free ions in the suspension, leading to a decrease in 

conductivity. Once all sulfate groups have been neutralized, additional of NaOH increases 

conductivity once more. The titration to 2.88 mL of 0.01 M NaOH accounts to a 0.224 mmol/g 

sulfate groups per gram of cellulose. 

 
Figure S1: Titration curve.  The point of inflection is used to determine the amount of sulfated 

grafted groups though the addition NaOH 

 

 

  



 S5 

ESI. 3: DEGREE OF SUBSTITUTION OF CNC 

Using equations S1 and S2 and the AFM dimensions of the CNC, the ratio of exposed chains 

and number of exposed hydroxyl group on the surface of the CNC can be calculated. The average 

dimensions for 𝐿1 = 𝐿2 = 7.51 nm. The number of sulfate groups is obtained from the 

conductometric titration. The degree of substitution at the surface is given by eqn. S3. The 

calculations are developed hereunder: 

𝑅𝐶  : Ratio of chains exposed on the surface of the CNC 

𝑅𝐶 =
𝑛𝑠

∑ 𝑛
=

2 (
𝐿1

𝑑110
) + 2 (

𝐿2

𝑑11̅0
)  

𝐿1𝐿2

𝑑(110) × 𝑑(11̅0)

=
2 (

7.51
0.531

) + 2 (
7.51

0.596
)  

7.51 × 7.51
0.531 × 0.596

= 0.30   

𝑁𝑂𝐻 : Number of hydroxyl groups on the surface of the CNC (mmol/g) 

𝑁𝑂𝐻 =
𝑛1 + 𝑛2

𝜌𝑁𝐴𝐿1𝐿2
(

𝐿1 + 𝐿2

𝑑(110)
+

𝐿1 + 𝐿2

𝑑(11̅0)
) + 2(𝜌𝑁𝐴𝐿3𝑑110) = 2.88 mmol/g 

𝑁𝑆𝑂4− : Number of sulfate groups per gram of cellulose (mmol/g) 

𝑁𝑆𝑂4− =   0.22 mmol/g 

𝐷𝑆𝑠𝑢𝑟𝑓 ∶ Degree of substitution at the surface 

𝐷𝑆𝑠𝑢𝑟𝑓 =
𝑁𝑚𝑜𝑑

𝑁𝑂𝐻
=

0.22

2.88
=  0.076  

𝐷𝑆: Degree of substitution of all chains: 

𝐷𝑆 = 𝑅𝐶  𝐷𝑆𝑠𝑢𝑟𝑓  =   0.023 

In total, 7.6 % of unit cells at the surface and 2.3 % of all unit cells have been modified. The 

sulfate grafted unit cells remain small with respect to the non-grafted ones. Furthermore, the sulfate 

groups are not aligned in the same orientation as is the case with cellulose chains. Indeed, they are 

grafted on the (110) and (11̅0) planes and not on equivalent hydroxyl groups. For this reason, the 
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effective second order hyperpolarizability of the sulfate groups cannot be added cumulatively. 

Consequently, it is expected that the overall contributions of the grafted sulfate moieties to the 

second order nonlinear response remain negligible compared to the bulk response of the cellulose 

chains. 

 

ESI. 4: CONCENTRATION MEASUREMENTS VIA THERMAL ANALYLSIS 

A Netzsch F3 Tarsus thermogravimetric analyser was used to determine the wt. % concentration 

of the CNC suspension. The method was carried out in nitrogen atmosphere and involved heating 

of the sample during two segments: the first segment included heating to 85°C at a rate of 

10°C/minute, followed by an isothermal period of 30 minutes. During the second segment heating 

was continued to 150°C at a rate of 10°C /minute. The water content was determined in the linear 

region of the resulting TGA curve, as the mass loss at 85°C. 
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ESI. 5: ABSORPTION SPECTRA – UV-VIS 

HRS raw data has not been corrected with the absorption spectra which would reduce the amount 

of measurable signal. These have nonetheless been carried out using UV-Vis and shown in Fig. S2. 

The absorption spectra is small for low weight concentrations and furthermore, the laser beam was 

aimed at the edge of the quartz cuvette at less than 10 % of the total optical path of the cuvette. 

For the highest concentrations, we observe less than 0.2 absorption which accounts for less than 

0.02 absorption when we consider the reduced optical path length of the HRS measurement. 

 

Figure S2: Absorption spectra (A) UV-Vis spectra of CNC concentration series (B) Linear 

plot of average abs. around 510-520 nm as a function of concentration. The HRS signal would 

experiences minimal signal loss since the laser is focused on the edge of the cuvette. 
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ESI. 6: QUADRATIC REGIME – ABSENCE OF HIGHER ORDER EFFECTS 

To ensure that we were within the quadratic response of our CNC and to ensure that there was 

no occurrence of third order effects in our signal. A power sweep was performed to check for the 

quadratic regime of the response. Additionally, the power sweeps for each concentration was fitted 

to a quadratic function of the form 𝑓(𝑥) =  𝐵2 𝑥2  +  𝑐𝑠𝑡. The fitted B2 coefficients are then 

plotted against CNC concentration. Both these plots are shown in Fig. S3 which clearly 

demonstrate a quadratic power dependence. This quadratic regime demonstrates the absence of 

higher order effects (for instance Kerr effects) which would deviate the response. 

 

Figure S3: Power sweep. Confirming that our measurement are carried out in the quadratic 

regime, without the occurrence of third order effects. (A) Second harmonic response with respect 

to varying powers for four different samples (0, 0.1 wt.%, 0.4 wt.% and 0.9 wt.%). (B) The 

quadratic coefficient (B2) of the power sweep with respect to the CNC concentration. 
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ESI. 7: HYPER-RAYLEIGH SCATTERING THEORETHICAL BACKGROUND 

Hyper-Rayleigh scattering (HRS) involves the scattering of second-harmonic light, which is 

governed by the molecular first hyperpolarizability, β. In an HRS experiment, the concentration of 

the solute is kept low to ensure that each scatterer is independent and randomly oriented. In other 

terms, the hyper-Rayleigh signal originates from individual nonlinear scatters that do not exhibit 

specific phase relations with respect to one another in the solution. For uncorrelated scatterers, the 

hyper-Rayleigh intensity is given by eqn (S5) (Clays et al. 1994): 

 𝐼2ω =
16π5

𝑐λ4𝑟2 
𝑁 𝑓ω

4 𝑓2ω
2  βHRS

2  𝐼ω
2  (𝑆5) 

where N is the concentration of chromophores, and 𝑓ω and 𝑓2ω are local field factors. 𝐼ω the 

intensity at the fundamental wavelength, 𝐼2ω the intensity at the second harmonic, 𝑟 the distance 

to the scattering molecule, and 𝑐 the speed of light in vacuum. 

The scattering geometry for HRS is defined using the surface of the optical table as the horizontal 

reference plane (XY). The fundamental light beam is propagating in the X-direction and polarized 

in the Z-direction. The scattered light is collected in the Y-direction (i.e at 90° of the fundamental 

light beam) and through the use of an analyzer, SH signal polarized in the X direction and the Z 

direction can be isolated. These measurable quantities are defined as βZZZ
2  and βXZZ

2 . Here the first 

subscript (Z or X) refers to the polarization state of the frequency double light in the laboratory 

coordinate system. The second and third subscript correspond to the two photons polarized in Z of 

the incoming beam. The scattering geometry showing the macroscopic and molecular frames are 

provided in Fig. S4. 



 S10 

 

Figure S4: Scattering geometry of HRS setup. (A) Incoming beam with frequency 𝜔, propagating 

in the X-direction and polarized in the Z-direction of the macroscopic frame. (B) A CNC with 

arbitrary orientation and it’s molecular frame at an angle to the macroscopic frame. This 

illustration depicts a single CNC however a large number of CNC over all orientations are found 

within interaction volume. (C) The detected SH signal at frequency 2𝜔 is used  to determine  𝛽𝑍𝑍𝑍
2  

and 𝛽𝑋𝑍𝑍
2  by the use of an analyzer in the Z-direction for 𝐸𝑍(2𝜔) and the X-direction for 𝐸𝑋(2𝜔) 

respectively. 

The macroscopic measurable quantities are related by the molecular first hyperpolarizability 

components β𝑖𝑗𝑘 by the eqn (S6) and eqn (S7) which have been demonstrated by the works of 

Cyvin et al.3 These are as follows: 

 βZZZ
2 =

1

7
∑ βiii

2 +
6

35
∑ βiiiβijj

i≠j

+
9

35
i

∑ βiij
2

i≠j

+
6

35
∑ (βiijβjkk +

12

35
βijk

2 )

ijk,cyclic

 (𝑆6) 

 βXZZ
2 =

1

35
∑ βiii

2 −
2

105
∑ βiiiβijj

i≠j

+
11

105
i

∑ βiij
2

i≠j

−
2

105
∑ (βiijβjkk +

8

35
βijk

2 )

ijk,cyclic

 (𝑆7) 

   

Whereby ijk refers to the molecular coordinate system. The sum over “ijk, cyclic" corresponds 

to ijk being equal to either xyz, zxy, or yzx. Since both polarizations are detected with equal 

sensitivity, the total orientational average β𝐻𝑅𝑆
2  is the sum of both these macroscopic responses.  
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 βHRS
2 = βZZZ

2  + βXZZ
2  (𝑆8) 

ESI. 8: INTERNAL REFERENCE METHOD 

In the internal reference method, the first hyperpolarizability, βHRS,x of the sample is determined 

directly from the first hyperpolarizability of the solvent, βHRS,S. For very dilute solutions such as 

those used in HRS experiments, the refractive index of the solvent is assumed not to change. In a 

two-component system consisting of the solvent and randomly oriented molecules, the total 

measured HRS signal will be the sum of both uncorrelated scatterers. The HRS signal is the 

cumulative response of the solvent (S) and the randomly oriented molecule (x) to give: 

𝐼2𝜔 ,𝑥 = 𝑔 [ 𝑁𝑆βHRS,S
2  +   𝑁𝑥βHRS,x

2 ] 𝐼𝜔
2  (𝑆9) 

This equation can be rearranged and expressed as a linear expression as a function of solute 

concentration, 𝑁𝑥 whereby  

𝐼2𝜔 ,𝑥  = (𝑔 βHRS,x
2  𝐼𝜔

2 ). 𝑁𝑥   +   𝑁𝑆 (𝑔 βHRS,S
2  𝐼𝜔

2 )  

=  𝑎 𝑁𝑥  +  𝑏 

(𝑆10) 

With a = (𝑔 βHRS,x
2  𝐼𝜔

2 ) being the slope and  b = 𝑁𝑆(𝑔 βHRS,S
2  𝐼𝜔

2 ) being the y-intercept.   These 

values can be experimentally determined through the collection of a concentration series of the 

solute. From the known slope and the y-intercept of the linear fit and rearranging the expression, 

we obtain for βHRS,x: 

βHRS,x = √
𝑠𝑙𝑜𝑝𝑒

𝑦 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡
𝑁𝑆βHRS,S 

 

(𝑆11) 
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For the first hyperpolarizability of the solvent, the values used are the ones by Campo et al.4 The 

static first hyperpolarizability, 𝛽𝑧𝑧𝑧,0 are provided, and by using  the two-state model we can obtain 

the 𝛽𝑧𝑧𝑧 at a specific wavelength 

𝛽𝑧𝑧𝑧 =
𝛽𝑧𝑧𝑧,0

[1 − (
𝜆𝑒𝑔

𝜆
)

2

] [1 − (
 𝜆𝑒𝑔

𝜆/2
)

2

]

 

 

(𝑆12) 

Where 𝜆𝑒𝑔 is the transition wavelength and 𝜆 is the fundamental wavelength. For uniaxial dipolar 

molecule, the first hyperpolarizability for HRS of the solvents can be calculated by the following: 

βHRS,S = √
6

35
𝛽𝑧𝑧𝑧,𝑆 (𝑆13) 

Using the linear plot of the concentration series to determine the slope and the y-intercept, and 

the known first hyperpolarizability of the solvent, one can determine the first hyperpolarizability 

of the sample. 

 

ESI. 9: ERROR PROPAGATION OF THE INTERNAL REFERNCE METHOD WHEN 

DERIVING 𝛃𝐇𝐑𝐒 

The reported error for the HRS intensity is the standard deviation from five successive acquisitions 

for each data point. Fig S5. provides an example of raw HRS data that was obtained for the 

0.6 wt. % CNC suspension. 
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Figure S5: Raw data acquisition: Each data point was acquired five times, with each spectrum 

individually fitted to determine the area under the curve. The error for each data point was 

calculated as the standard deviation of the five acquisitions. Exposure times were adjusted based 

on relative concentrations to prevent detector saturation with all other acquisition parameters 

remaining constant. An example of five raw spectra detections for 0.6 wt.% CNC is shown in (A) 

<ZZZ> with a 2-second exposure time and in (B) <XZZ> with a 5-second exposure time. 

A linear regression with weighted sum of least squares on each data point gave an overall fit 

error for the linear regression for the slope (𝑎 ± ∆𝑎) and y-intercept (𝑏 ± ∆𝑏).  The equation for 

βHRS is then provided by the following: 

βHRS  ± ∆βHRS  = √
𝑎 ± ∆𝑎

𝑏 ± ∆𝑏
𝑁𝑆βHRS,S (𝑆14) 

The propagation of the error, ∆βHRS, is then calculated from the sum of the partial derivatives 

and their own errors. It expands to the following:  

∆βHRS = |
𝜕𝛽(𝑎, 𝑏)

𝜕𝑎
| 𝛥𝑎 + |

𝜕𝛽(𝑎, 𝑏)

𝜕𝑏
| 𝛥𝑏 (𝑆15) 

where we have for both partial derivatives: 
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𝜕𝛽(𝑎, 𝑏)

𝜕𝑎
=

𝐶𝑠𝑡

2𝑏
.

1

√𝑎/𝑏
 (𝑆16) 

𝜕𝛽(𝑎, 𝑏)

𝜕𝑏
= −

𝐶𝑠𝑡

2𝑏
.

𝑎

√𝑎𝑏3
 

(𝑆17) 

With 𝐶𝑠𝑡 = √𝑁𝑆 βHRS,S 

From eqns S15 – S17, the error for  ∆βHRS  can be determined. 

ESI. 10: NEGLIGIBLE COHERENCE CONTRIBUTION 

For an ensemble of molecules with fixed relative positions, phase relations result in the 

appearance of coherent effects. If the dimensions of this ensemble remain small compared to the 

scattering wavelength, then we can still consider them as point sources.5 Additionally, as 

mentioned earlier, since the NLO response of the bulk of the response depends on the square of 

the volume of the aligned harmonophores (𝑉2), the contribution of the bulk will quickly dominate 

over surface effects. 

 We can demonstrate that due to the relatively small size of the CNC combined with the 

wavelengths of our experiment, that the angular dependence can be neglected. We considered the 

NIST SANS Data reduction for a parallelepiped of dimensions A,B and C.6 In this context L1=A, 

L2=B and L3 = C. Although we have in our main discussion L1=L2, this equality cannot be used in 

the model therefore we consider L2 > L1 and increase the size of one of the edges by a small 

amount.  The aim here is not to get an accurate determination of the angle dependence but rather 

to demonstrate that it remains small for the 90° HRS setup to remain valid i.e isotropic scattering 

even for larger CNC crystals. The response of the parallelepiped model for dimensions L1 = 7 Å, 

L2 = 7.5 Å and L3 = 170 Å is provided in Fig. S6. The SANS equations are expressed through the 

reduced lengths, normalized to the middle ones whereby 
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𝑎 =
𝐴

𝐵
;    𝑏 =

𝐵

𝐵
= 1;   𝑐 =

𝐶

𝐵
 (𝑆18) 

The form factor is calculated as a double integral by the following: 

𝑃(𝑞) =
𝑠𝑐𝑎𝑙𝑒

𝑉𝑃
∫ ϕ𝑄 (μ√1 − σ2, 𝑎) [𝑆(𝑢𝑐σ/2)]2𝑑σ

1

0

 (𝑆19) 

With 

σ𝑄(μ, 𝑎) = ∫ (𝑆 [μ/2𝑐𝑜𝑠 (
π

2
𝑢)] . 𝑆 [μ𝑎/2𝑠𝑖𝑛 (

π

2
𝑢)])

21

0

𝑑𝑢 (𝑆20) 

Where the function 𝑆(𝑥) is defined as  

𝑆(𝑥) =
𝑠𝑖𝑛(𝑥)

𝑥
 (𝑆21) 

And  

μ =  𝑞𝐵 (𝑆22) 

Whereby q, is the scattering vector and expressed by: 

𝑞 =
4π

λ
𝑠𝑖𝑛 (

θ

2
) (𝑆23) 

 

Figure S6: Parallelepiped scattering curve: Parallelepiped with dimensions of 7 Å, 7.5 Å, and 

170 Å, plotted on a logarithmic scale. 
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The numerical aperture (NA) of our setup is 0.165, corresponding to a total collection angle (2θ) 

of approximately 15°. Fig. S7 displays the responses of parallelepipeds of increasing sizes, using 

the scattered wavelength intensity of 515 nm for angles from 0 - 180°. The angular dependence 

becomes more pronounced as the size of the parallelepiped increases, in this case the length c (or 

L3). However, even for the longest rods at L1 = L2 =10 nm and L3 = 400 nm minimal angle 

dependence around 90° is observed. Indeed, even at the upper limit of these CNCs, the angular 

dependence remains small (less than 10%). This is an extreme case as the proportion of CNCs 

measuring 400 nm or longer is very low. According to our probability density function for L3 of 

our AFM measurements (eqn. 15) fewer than 0.52% of rods exceed 400 nm in length. 

Figure S7: Angle dependence for different CNC dimensions. (A) Parallelepiped scattering 

curves for different dimensions of a, b and c. (B) Scattering curve for c=400 nm and a=10 and b 

= 10 nm which shows that in the upper limit of long rods, angular dependance remains small 

(<10%) around values of 90° ± 15°.  
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ESI. 11: GEOMETRY OPTIMIZATION OF THE CRYSTAL UNIT CELL AT THE DFT 

LEVEL WITH PERIODIC BOUNDARY CONDITIONS – THEORETICAL 

FRAMEWORK 

The following calculation parameters were employed: TOLINTEG 9 9 9 30 70, SHRINK 7 7. The 

latter is related to the density of the grid sampling the first Brillouin zone in view of the k 

summations/integrations. The TOLINTEG keyword controls the truncations of the lattice 

summations involved in computing k-dependent matrices and the energy per unit cell. The choice 

of the XCF, the PBC-related parameters, as well as the basis set were made considering the results 

of Mairesse et al.7 Further details about the theoretical framework are available in Dovesi et al.8 

 

 

ESI. 12: UNIT CELL FIRST HYPERPOLARIZABILITY AT THE DFT LEVEL WITH 

PERIODIC BOUNDARY CONDITIONS – THEORETICAL FRAMEWORK 

Within Periodic Boundary Conditions, Bloch functions are combined linearly to give crystalline 

orbitals. A Bloch function 𝜑 is defined as: 

𝜑𝑞 = ∑ 𝜒𝑞
𝒈

𝑒𝑖𝒌∙𝒈

𝒈

 
(S24) 

where 𝒈 is a vector pointing from the origin and running to every crystalline cell, 𝜒𝑞
𝒈

 is the qth 

atomic orbital in cell 𝒈 and 𝒌 is a vector in the first Brillouin zone. 

The polarizability and first hyperpolarizability of a crystalline unit cell can be computed from the 

LCAO coefficient matrix, its derivatives (with respect to the electric field), some integral matrices, 

and the eigenvalues of the corresponding crystalline orbital: 

𝛼𝜁𝜂(−𝜔; 𝜔) =
−2

𝑁𝒌
ℜ ∑ ℘𝜁/−𝜔,𝜂/𝜔 {∑ ∑ ∑ ∑ 𝐶𝑝𝑖,𝒌

(0)∗𝑀𝑝𝑞,𝒌
𝜁

𝐶𝑞𝑎,𝒌
(0)

𝑈𝑎𝑖,𝒌
𝜂

(𝜔)

𝑎𝑖𝑞𝑝

}

𝒌

 (S25) 
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𝛽𝜁𝜂𝜏(−2𝜔; 𝜔, 𝜔)

=
−1

𝑁𝒌
ℜ ∑ ∑ ∑ ℘𝜁/−2𝜔,𝜂/𝜔,𝜏/𝜔 {𝑈𝑎𝑖,𝒌

𝜁∗
(−2𝜔) [∑ 𝐺𝑎𝑏,𝒌

𝜂 (𝜔)𝑈𝑏𝑖,𝒌
𝜏 (𝜔)

𝑏𝑎𝑖𝒌

− ∑ 𝑈𝑎𝑗,𝒌
𝜏 (𝜔)𝐺𝑗𝑖,𝒌

𝜂 (𝜔)

𝑗

+ 𝜄
𝜕𝑈𝑎𝑖,𝒌

𝜏 (𝜔)

𝜕𝑘𝜂
]}                                              (𝑆26) 

where 𝜁, 𝜂, 𝜏 are cartesian directions, p and q are Bloch functions indices, ℘ is the permutation 

operator, ℜ takes the real part, 𝜄 is the imaginary number, 𝑁𝒌 is the number of vectors sampling 

the first Brillouin zone, and 𝐶𝑞𝑚,𝒌
(0)

 is the LCAO coefficient of the qth basis function in the mth 

crystalline orbital at the 𝒌 vector (the (0) superscript refers to the unperturbed solution). The i, j 

and a, b indices refer to occupied and unoccupied crystalline orbitals, respectively. When 𝜁, 𝜂, 𝜏 

are in superscript, it means that the element is differentiated with respect to the module of the 

applied electric field in that direction, around zero amplitude. The 𝑀 and 𝐺 matrices are defined 

as  

𝑀𝑝𝑞,𝒌
𝜁

= ∑⟨𝜒𝑝
0|(𝒓 + 𝜄𝛁𝒌)𝑒𝜄𝒌∙𝒈|𝜒𝑞

𝒈
⟩

𝜁
𝒈

= ∑ 𝑒𝜄𝒌∙𝒈⟨𝜒𝑝
0|(𝒓 − 𝒈)𝜁|𝜒𝑞

𝒈
⟩

𝒈

 
(S27) 

𝐺𝒌
𝜁(𝜔) = 𝐶𝒌

(0)† (𝐹𝒌
𝜁(𝜔)𝐶𝒌

(0)
+ 𝑀𝒌

𝜁
𝐶𝒌

(0)
+ 𝜄𝑆𝒌

𝑑𝐶𝒌
(0)

𝑑𝑘𝜁
) 

(S28) 

where the electric dipole moment operator is replaced by 𝒓 + 𝜄𝛁𝒌 to prevent breaking the 

periodicity of the potential, 𝑆𝒌 is the overlap matrix of the Bloch functions, 𝐹𝒌 is the Fock matrix 

defined according to  

𝐹𝑝𝑞,𝒌 = ∑⟨𝜒𝑝
0|�̂�𝑒𝑖𝒌∙𝒈|𝜒𝑞

𝑔⟩

𝒈

 
(𝑆29) 
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where �̂� is the Fock operator, defined and discussed in Dovesi et al.8 Finally, the 𝑈𝒌 matrix, whose 

off-diagonal elements are computed with  

𝑈𝑖𝑎,𝒌
𝜁 (±𝜔) =

𝐺𝑖𝑎,𝒌
𝜁 (±𝜔)

𝜀𝑎,𝒌
(0)

− 𝜀𝑖,𝒌
(0)

∓ 𝜔
 

(S30) 

where 𝜔 is the frequency of the incident electric field and 𝜀𝒌
(0)

 are the crystalline orbital 

eigenvalues, allows to get 𝐶𝒌
𝜁
: 

𝐶𝒌
𝜁(𝜔) = 𝐶𝒌

(0)
𝑈𝒌

𝜁(𝜔) (S31) 

Equations S27 – S31 are solved self-consistently through the iterative CPKS scheme (called 

TDDFT in the dynamic case).9–11 

The unit cell first hyperpolarizability tensors of both the neutron diffraction and optimized 

structure of Iβ cellulose were computed using CRYSTAL17. The selected levels of approximation 

are i) the 6-311G** basis set, with ii) the CAM-B3LYP 12, ωB97X, and LC-BLYP 13 XCFs. The 

calculation parameters were: TOLINTEG 9 9 9 30 70, SHRINK 6 6. These choices were made in 

line with the results of Mairesse et al.14 In particular, range-separated hybrid XCFs were employed 

because the NLO responses are intrinsically non-local properties and the XCFs should contain a 

substantial amount of HF exchange because it displays the correct asymptotic behavior. This 

condition is fulfilled using global hybrids, where the amount of HF exchange does not depend on 

the interelectronic distance, provided this amount is large15 or with range-separated hybrids, where 

i) the 1/r operator is split into short- and long-range parts by using a smooth function and ii) the 

short-range part is associated with local/semilocal exchange and the long-range part with HF 

exchange. Several studies demonstrated that RSHs perform better than local/semilocal XCFs16 

These conclusions were further substantiated in Mariesse et al, which deals with organic and 

inorganic crystals.14 
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ESI. 13: UNIT CELL FIRST HYPERPOLARIZABILITY AT THE DFT LEVEL WITH 

PERIODIC BOUNDARY CONDITIONS – RESULTS 

Table S1. 𝜒(1) non-zero components of Iβ cellulose, calculated with various XCFs considering the 

experimental and the DFT-optimized structure, for a static incident field 

 χXX
(1)

 χXY
(1)

 χYY
(1)

 χ𝑍𝑍
(1)

 Band gap (eV) 

CAM-B3LYP 0.94 -0.01 1.26 1.41 10.38 

ωB97X 0.96 -0.01 1.26 1.40 12.07 

LC-BLYP40 1.13 -0.01 1.42 1.58 7.44 

LC-BLYP30 1.19 -0.01 1.48 1.63 6.53 

LC-BLYP20 1.25 -0.01 1.54 1.70 5.63 

LC-BLYP20-optimized 1.56 0.00 1.69 1.84 6.04 

 

Table S2. 𝜒(1) non-zero components of Iβ cellulose, calculated with various XCFs considering the 

experimental and the DFT-optimized structure, for a 1064 nm wavelength incident field 

 χXX
(1)

 χXY
(1)

 χYY
(1)

 χ𝑍𝑍
(1)

 Band gap (eV) 

CAM-B3LYP 0.95 -0.01 1.26 1.42 10.38 

ωB97X 0.97 -0.01 1.26 1.41 12.07 

LC-BLYP40 1.14 -0.01 1.44 1.59 7.44 

LC-BLYP30 1.20 -0.01 1.49 1.65 6.53 

LC-BLYP20 1.26 -0.01 1.56 1.71 5.63 

LC-BLYP20-optimized 1.58 0.00 1.71 1.86 6.04 

 

Table S3. 𝜒(1) non-zero components of Iβ cellulose, calculated with various XCFs considering the 

experimental and the DFT-optimized structure, for a 532 nm wavelength incident field 
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 χXX
(1)

 χXY
(1)

 χYY
(1)

 χ𝑍𝑍
(1)

 Band gap (eV) 

CAM-B3LYP 0.97 -0.01 1.29 1.45 10.38 

ωB97X 0.99 -0.01 1.29 1.44 12.07 

LC-BLYP40 1.18 -0.01 1.48 1.63 7.44 

LC-BLYP30 1.24 -0.01 1.54 1.70 6.53 

LC-BLYP20 1.32 -0.01 1.61 1.77 5.63 

LC-BLYP20-optimized 1.65 0.00 1.76 1.92 6.04 

 

In Table S4, we have gathered the first hyperpolarizability tensor components of the Iβ cellulose 

unit cell, and the (HOMO-LUMO) electronic band gap, for each of the employed XCFs. The 

quantities βZZZ
2 , βXZZ

2 , βHRS
2 , βHRS = √βHRS

2  and DR are also reported. These were calculated from 

eqn (S6) – (S8). Experimental values are provided as a comparison. 

Table S4. 𝛽 components and related quantities of 𝐼𝛽 cellulose bulk per unit cell computed with 

several exchange correlation functionals (in 10−30 esu, B convention) considering the Nishiyama 

neutron diffraction geometry, except for LC-BLYP20-optimized where the structure has been 

optimized with 𝜔B97X, and where the number next to LC-BLYP is the tuned maximum percentage 

of Hartree-Fock exchange at infinite distance. 

β 
LC-BLYP20-

optimized 
LC-BLYP20 LC-BLYP30 LC-BLYP40 ωB97X CAM-B3LYP Experimental 

XXX 0.000 0.000 0.000 0.000 0.000 0.000  

XXY 0.000 0.000 0.000 0.000 0.000 0.000  

XXZ 0.448 0.376 0.278 0.209 0.080 0.063  

XYX 0.000 0.000 0.000 0.000 0.000 0.000  

XYY 0.000 0.000 0.000 0.000 0.000 0.000  

XYZ -0.446 -0.078 -0.005 0.033 0.056 0.067  
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XZX 0.448 0.376 0.278 0.209 0.080 0.063  

XZY -0.446 -0.078 -0.005 0.033 0.056 0.067  

XZZ 0.000 0.000 0.000 0.000 0.000 0.000  

YXX 0.000 0.000 0.000 0.000 0.000 0.000  

YXY 0.000 0.000 0.000 0.000 0.000 0.000  

YXZ -0.426 -0.043 0.015 0.045 0.058 0.070  

YYX 0.000 0.000 0.000 0.000 0.000 0.000  

YYY 0.000 0.000 0.000 0.000 0.000 0.000  

YYZ -0.994 -0.928 -0.807 -0.727 -0.584 -0.566  

YZX -0.426 -0.043 0.015 0.045 0.058 0.070  

YZY -0.994 -0.928 -0.807 -0.727 -0.584 -0.566  

YZZ 0.000 0.000 0.000 0.000 0.000 0.000  

ZXX 0.398 0.374 0.276 0.207 0.079 0.063  

ZXY -0.397 -0.013 0.037 0.061 0.065 0.075  

ZXZ 0.000 0.000 0.000 0.000 0.000 0.000  

ZYX -0.397 -0.013 0.037 0.061 0.065 0.075  

ZYY -0.982 -0.968 -0.839 -0.752 -0.593 -0.575  

ZYZ 0.000 0.000 0.000 0.000 0.000 0.000  

ZZX 0.000 0.000 0.000 0.000 0.000 0.000  

ZZY 0.000 0.000 0.000 0.000 0.000 0.000  

ZZZ 1.560 1.570 1.340 1.160 0.757 0.896  

βZZZ
2  0.459 0.391 0.277 0.206 0.097 0.114  

βXZZ
2  0.240 0.211 0.153 0.117 0.061 0.066  

βHRS
2  0.699 0.603 0.429 0.322 0.159 0.180  

βHRS 0.836 0.776 0.655 0.568 0.398 0.425 0.193 ± 0.011 

DR 1.916 1.851 1.816 1.767 1.587 1.729 3.111  ± 0.668 

Band Gap (eV) 6.04 5.63 6.53 7.44 12.07 10.38  
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ESI.14: REDUCING THE TENSOR COMPLEXITY 

Table S5. New first hyperpolarizability components of cellulose nanocrystals (10-30 esu, B 

convention) computed from the depolarization ratio and 𝛽𝐻𝑅𝑆 obtained from DFT-PBC 

calculations at 1064 nm, assuming 𝛽𝑧𝑧𝑧 and 𝛽𝑧𝑦𝑦 are the only nonzero independent components 

 Initial quantities Discarded solution Selected solution 

 βHRS DR βzzz βzyy RC2v =
βzyy

βzzz
 βzzz βzyy RC2v =

βzyy

βzzz
 

LC-BLYP20-opt 0.836 1.916 0.455 -1.453 -3.197 1.953 -0.954 -0.489 

LC-BLYP20 0.776 1.851 0.491 -1.353 -2.755 1.784 -0.922 -0.517 

LC-BLYP30 0.655 1.816 0.450 -1.143 -2.543 1.490 -0.797 -0.534 

LC-BLYP40 0.568 1.767 0.434 -0.991 -2.285 1.270 -0.713 -0.561 

ωB97X 0.398 1.587 0.455 -0.687 -1.509 0.803 -0.571 -0.712 

CAM-B3LYP 0.425 1.729 0.352 -0.741 -2.106 0.936 -0.547 -0.584 

 

 

ESI. 15: ELECTRIC FIELD INSIDE A DIELECTRIC IN A CONTINUOUS MEDIUM – 

FULL CALCULATIONS 

The ratio between the electric field in a cavity and the Maxwell field in a surrounding solvent 

(here, water with a εr = 1.7583 at 1064 nm) is, considering that the shape of the cavity is 

approximated by an ellipsoid of principal axis a, b, and c, computed with the following formula, 

see equation 2.79 of Böttcher et al.17 

𝐸𝛼,𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒

𝐸𝛼,𝑀𝑎𝑥𝑤𝑒𝑙𝑙
= ratio𝛼 =

𝜀𝑤𝑎𝑡𝑒𝑟

𝜀𝑤𝑎𝑡𝑒𝑟 + (𝜀𝛼,𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 − 𝜀𝑤𝑎𝑡𝑒𝑟)𝐴𝛼

 (S32) 
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where α is a cartesian direction along one of the principal axis of the ellipsoid, and Aα is a 

geometrical parameter defined as 

𝐴𝛼 =
𝐿1𝐿2𝐿3

2
∫

1

(𝑠 + 𝐿𝛼
2 )√(𝑠 + 𝐿1

2)(𝑠 + 𝐿2
2 )(𝑠 + 𝐿3

2 )
𝑑𝑠

∞

0

 (S33) 

where 𝐿α is the length along the α direction and s the integration variable. . 

The distribution of the ratios between the nanocellulose crystal L3/L1 axis, where L3 is identified 

with the z axis of the linear and nonlinear optical quantities (that is, along the cellulose polymer 

chains), is shown in the following graph. 

 

Figure S8:  L3/L1 ratio distribution. The number of occurrences are divided into classes that 

were obtained from the distribution analysis from the AFM images 

Experimentally, the nanocrystals have been divided into classes of 𝐿3/𝐿1 ratios between 0 and 

4, 4 and 8, 8 and 12, … up to 74, and the middle of the classes range have been taken as the 

representative ratio of the classes (that is: 2, 6, 10, …). This is illustrated in Fig. S8. Assigning 

those class representative ratios to the ratios of principal axes lengths of prolate ellipsoids, we 



 S25 

compute the 𝐴𝛼 parameters. Since the integral has been carried numerically, the quality of the 

geometrical parameters is monitored by looking at their sum, which is in principle exactly equal 

to one. 18  

 

Table S6. Distribution of the L3/L1 ratios, divided in classes, as well as the class weights and 

the corresponding ellipsoid geometrical parameters 

Class 
# of 

occurrence 

Weight in 

distribution 
Ax = Ay Az Sum(Aα’s) 

2 0 0.0000 0.41322 0.17356 1.00000 

6 6 0.0068 0.47839 0.04323 1.00000 

10 40 0.0450 0.48986 0.02029 1.00000 

14 109 0.1227 0.49400 0.01200 1.00000 

18 167 0.1881 0.49599 0.00801 1.00000 

22 182 0.2050 0.49711 0.00577 1.00000 

26 123 0.1385 0.49781 0.00438 1.00000 

30 103 0.1160 0.49828 0.00344 1.00000 

34 66 0.0743 0.49861 0.00279 1.00000 

38 33 0.0372 0.49885 0.00231 1.00000 

42 20 0.0225 0.49903 0.00195 1.00000 

46 18 0.0203 0.49917 0.00167 1.00000 

50 6 0.0068 0.49928 0.00144 1.00000 

54 6 0.0068 0.49937 0.00126 1.00000 

58 3 0.0034 0.49944 0.00112 1.00000 

62 4 0.0045 0.49950 0.00099 1.00000 

66 0 0.0000 0.49955 0.00089 1.00000 

70 1 0.0011 0.49960 0.00080 1.00000 
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74 1 0.0011 0.49963 0.00073 1.00000 

Average  0.49661±0.01985 0.00677±0.03971  

 

We also give the bulk cellulose permittivity’s computed with the various XCFs, as well as their 

first hyperpolarizability components obtained assuming C2v symmetry and 𝛽𝑧𝑥𝑥 = 𝛽𝑥𝑧𝑥 = 𝛽𝑥𝑥𝑧 =

0. The x and y directions are considered as being equivalent in the model, so the relative 

permittivity taken into account to obtain the 
Eα,cellulose

Eα,Maxwell
 ratio is the same for both of them, and equal 

to the mean value of the computed relative permittivity’s. 

 

Table S7. Cellulose crystal permittivity's computed at the DFT-PBC level with various XCFs for 

a 1064 nm incident field 

 
LC-BLYP20 

(optimized) 
LC-BLYP20 LC-BLYP30 LC-BLYP40 ωB97X CAM-B3LYP 

εz 2.860 2.714 2.647 2.590 2.413 2.419 

εx + εy

2
 2.643 2.410 2.345 2.290 2.114 2.106 

 

Considering the weights of the different classes of nanocrystals as well as the 
Eα,cellulose

Eα,Maxwell
 ratios in 

the x, y, and z directions, we get that the field intensity is different in the z and in the x or y 

direction, so that the first hyperpolarizability tensor elements are not measured with respect to the 

same field intensity reference. Therefore, the ratio between βzyy and βzzz is affected. To take this 

effect into account, we compute a new RC2v
 ratios by multiplying those tensor components by the 

square of the corresponding 
Eα,cellulose

Eα,Maxwell
 ratios, which are shown in Tables S8 and S9. In these Tables, 
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we see that, due to the similar geometrical parameters once the L3/L1 ratio is over 10, the electric 

field ratios quickly converge. Also, due to the weights of the various L3+L1 ratio classes, the mean 

value is almost identical to the converged value, with a small standard deviation. 

βzyy → βzyy (
Ey,cellulose

Ey,Maxwell
)

2

 (S34) 

βzzz → βzzz (
Ez,cellulose

Ez,Maxwell
)

2

 (S35) 

The new tensor components are shown in Tables S10 and S11, and we naturally observe the 

same convergence as for the electric field ratios. From these, scaled βHRS and depolarization ratios 

are calculated, see Table S12. 

Table S8. Ratio between the electric field inside the cellulose cavity and the Maxwell electric field 

(1064 nm) in the solvent surrounding it, for the y (or x) component, considering the classes in 

the distribution of nanocrystals 

Class LC-BLYP20-opti LC-BLYP20 LC-BLYP30 LC-BLYP40 ωB97X CAM-B3LYP 

2 0.828 0.867 0.879 0.889 0.923 0.925 

6 0.806 0.849 0.862 0.874 0.912 0.914 

10 0.802 0.846 0.859 0.871 0.910 0.912 

14 0.801 0.845 0.858 0.870 0.909 0.911 

18 0.800 0.845 0.858 0.870 0.909 0.911 

22 0.800 0.844 0.858 0.869 0.909 0.911 

26 0.800 0.844 0.857 0.869 0.908 0.910 

30 0.800 0.844 0.857 0.869 0.908 0.910 

34 0.799 0.844 0.857 0.869 0.908 0.910 

38 0.799 0.844 0.857 0.869 0.908 0.910 
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42 0.799 0.844 0.857 0.869 0.908 0.910 

46 0.799 0.844 0.857 0.869 0.908 0.910 

50 0.799 0.844 0.857 0.869 0.908 0.910 

54 0.799 0.844 0.857 0.869 0.908 0.910 

58 0.799 0.844 0.857 0.869 0.908 0.910 

62 0.799 0.844 0.857 0.869 0.908 0.910 

66 0.799 0.844 0.857 0.869 0.908 0.910 

70 0.799 0.844 0.857 0.869 0.908 0.910 

74 0.799 0.844 0.857 0.869 0.908 0.910 

Average 0.800±0.054 0.845±0.057 0.858±0.058 0.869±0.059 0.909±0.062 0.911±0.062 

 

Table S9. Ratio between the electric field inside the cellulose cavity and the Maxwell electric field 

(1064 nm) in the solvent surrounding it, for the z component, considering the classes in the 

distribution of nanocrystals 

Class LC-BLYP20-opti LC-BLYP20 LC-BLYP30 LC-BLYP40 ωB97X CAM-B3LYP 

2 0.902 0.914 0.919 0.924 0.939 0.939 

6 0.974 0.977 0.979 0.980 0.984 0.984 

10 0.987 0.989 0.990 0.991 0.993 0.992 

14 0.993 0.994 0.994 0.994 0.996 0.996 

18 0.995 0.996 0.996 0.996 0.997 0.997 

22 0.996 0.997 0.997 0.997 0.998 0.998 

26 0.997 0.998 0.998 0.998 0.998 0.998 

30 0.998 0.998 0.998 0.998 0.999 0.999 

34 0.998 0.998 0.999 0.999 0.999 0.999 

38 0.999 0.999 0.999 0.999 0.999 0.999 

42 0.999 0.999 0.999 0.999 0.999 0.999 

46 0.999 0.999 0.999 0.999 0.999 0.999 
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50 0.999 0.999 0.999 0.999 0.999 0.999 

54 0.999 0.999 0.999 0.999 1.000 1.000 

58 0.999 0.999 0.999 0.999 1.000 1.000 

62 0.999 0.999 0.999 1.000 1.000 1.000 

66 0.999 1.000 1.000 1.000 1.000 1.000 

70 0.999 1.000 1.000 1.000 1.000 1.000 

74 1.000 1.000 1.000 1.000 1.000 1.000 

Average 0.996±0.067 0.996±0.067 0.997±0.067 0.997±0.067 0.997±0.068 0.997±0.068 
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Table S10. Scaled 𝜷𝒛𝒚𝒚 (10-30 esu, B convention) obtained after multiplication by the ratio of the 

electric field inside the cavity and the Maxwell electric field (1064 nm) in the solvent surrounding 

it, for the y component, considering the classes in the distribution of nanocrystals 

Class LC-BLYP20-opti LC-BLYP20 LC-BLYP30 LC-BLYP40 ωB97X CAM-B3LYP 

2 -0.654 -0.694 -0.615 -0.563 -0.486 -0.467 

6 -0.620 -0.665 -0.592 -0.544 -0.475 -0.456 

10 -0.614 -0.661 -0.588 -0.541 -0.473 -0.454 

14 -0.612 -0.659 -0.587 -0.539 -0.472 -0.454 

18 -0.611 -0.658 -0.586 -0.539 -0.472 -0.453 

22 -0.611 -0.658 -0.586 -0.539 -0.471 -0.453 

26 -0.610 -0.657 -0.586 -0.538 -0.471 -0.453 

30 -0.610 -0.657 -0.585 -0.538 -0.471 -0.453 

34 -0.610 -0.657 -0.585 -0.538 -0.471 -0.453 

38 -0.610 -0.657 -0.585 -0.538 -0.471 -0.453 

42 -0.610 -0.657 -0.585 -0.538 -0.471 -0.453 

46 -0.610 -0.657 -0.585 -0.538 -0.471 -0.453 

50 -0.609 -0.657 -0.585 -0.538 -0.471 -0.453 

54 -0.609 -0.657 -0.585 -0.538 -0.471 -0.453 

58 -0.609 -0.657 -0.585 -0.538 -0.471 -0.453 

62 -0.609 -0.657 -0.585 -0.538 -0.471 -0.453 

66 -0.609 -0.657 -0.585 -0.538 -0.471 -0.453 

70 -0.609 -0.657 -0.585 -0.538 -0.471 -0.453 

74 -0.609 -0.657 -0.585 -0.538 -0.471 -0.453 

Average -0.611±0.041 -0.658±0.045 -0.586±0.040 -0.539±0.036 -0.471±0.032 -0.453±0.031 
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Table S11. Scaled 𝜷𝒛𝒛𝒛 (10-30 esu, B convention) obtained after multiplication by the ratio of the 

electric field inside the cavity and the Maxwell electric field (1064 nm) in the solvent surrounding 

it, for the z component, considering the classes in the distribution of nanocrystals 

Class LC-BLYP20-opti LC-BLYP20 LC-BLYP30 LC-BLYP40 ωB97X CAM-B3LYP 

2 1.589 1.490 1.260 1.085 0.708 0.825 

6 1.851 1.703 1.427 1.220 0.777 0.906 

10 1.904 1.745 1.460 1.246 0.791 0.922 

14 1.924 1.761 1.472 1.256 0.795 0.928 

18 1.933 1.769 1.478 1.261 0.798 0.930 

22 1.939 1.773 1.482 1.263 0.799 0.932 

26 1.942 1.776 1.484 1.265 0.800 0.933 

30 1.944 1.778 1.485 1.266 0.800 0.934 

34 1.946 1.779 1.486 1.267 0.801 0.934 

38 1.947 1.780 1.487 1.267 0.801 0.934 

42 1.948 1.780 1.487 1.268 0.801 0.935 

46 1.949 1.781 1.488 1.268 0.802 0.935 

50 1.949 1.781 1.488 1.268 0.802 0.935 

54 1.950 1.782 1.488 1.269 0.802 0.935 

58 1.950 1.782 1.489 1.269 0.802 0.935 

62 1.950 1.782 1.489 1.269 0.802 0.935 

66 1.951 1.782 1.489 1.269 0.802 0.935 

70 1.951 1.783 1.489 1.269 0.802 0.935 

74 1.951 1.783 1.489 1.269 0.802 0.935 

Average 1.936±0.131 1.771±0.120 1.480±0.100 1.262±0.085 0.799±0.054 0.931±0.063 
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Table S12. Averaged nonlinear optical quantities computed from the scaled 𝛽𝑧𝑦𝑦 and 𝛽𝑧𝑧𝑧 for 

various XCFs, in 10-30 esu (B convention) 

 
LC-BLYP20 

(optimized) 
LC-BLYP20 LC-BLYP30 LC-BLYP40 ωB97X CAM-B3LYP 

Rscaled -0.315±0.021 -0.371±0.025 -0.396±0.027 -0.427±0.029 -0.590±0.040 -0.487±0.033 

DRscaled 2.541±0.172 2.289±0.155 2.195±0.149 2.089±0.141 1.720±0.116 1.920±0.130 

βHRS,scaled 0.773±0.052 0.719±0.049 0.606±0.041 0.524±0.035 0.364±0.025 0.398±0.027 

 

ESI.16 : CORRESPONDING SECOND ORDER SUSCEPTIBILITY 

 

If we consider the βHRS,CNC,0 =  0.149 × 10−30 esu and we have a unit cell of 𝑉𝑢𝑐 =

6.58 × 10−22 cm3 with the relationship between the “cgs/esu”and the SI unit system to yield the 

following conversion factor χ𝑆𝐼
(2)

= 4.19 × 10−3χ𝑒𝑠𝑢
(2)

 . We then get a value for the susceptibility in 

the SI unit system to χ𝐶𝑁𝐶
(2)

= 0.949 ≈ 1 pm/V. 

 

ESI.17 : GENERAL FORM OF FIRST HYPERPOLARIZABILITY TENSOR 

The first hyperpolarizability tensor consists of 27 independent components; however, by 

considering the experimental conditions and the point group of the CNC, simplifications are 

possible. Since the experiments are being performed in non-resonant conditions, we assume 

Kleinmann symmetry to hold (i.e 𝛽𝑘𝑗𝑖  ≈  𝛽𝑖𝑗𝑘). Additionally, in the special case of second 

harmonic scattering, which is a degenerated case of sum-frequency scattering, the two excitation 

fields are indiscernible, this leads to 𝛽𝑖𝑗𝑘 = 𝛽𝑖𝑘𝑗.  Considering these approximations, the number 

of independent tensor components can be reduced from 27 to 18. The hyperpolarizability tensor 

can then be simplified to the contracted 6×3 matrix.  
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Furthermore, the 𝐼β allomorph of cellulose corresponds to a monoclinic 𝑃21 space group which 

is associated to a 𝐶2 point group.19  The only non-vanishing tensor components for 𝐶2 are 𝛽𝑧𝑧𝑧, 

𝛽𝑧𝑥𝑥(= 𝛽𝑥𝑥𝑧 = 𝛽𝑥𝑧𝑥) ,  𝛽𝑧𝑦𝑦(= 𝛽𝑦𝑧𝑦 = 𝛽𝑦𝑦𝑧) and 𝛽𝑥𝑦𝑧 (= 𝛽𝑦𝑧𝑥  =  𝛽𝑧𝑥𝑦  =  𝛽𝑥𝑧𝑦  =  𝛽𝑦𝑥𝑧  =

 𝛽𝑧𝑦𝑥 ) . The general non-vanishing tensor components for 𝐶2 with the dominant axis along z is 

then expressed as follows: 

𝛽𝑖𝑗𝑘 = (
0 0 0 𝑥𝑦𝑧 𝑧𝑥𝑥 0
0 0 0 𝑧𝑦𝑦 𝑥𝑦𝑧 0

𝑧𝑥𝑥 𝑧𝑦𝑦 𝑧𝑧𝑧 0 0 0
) (𝑆36) 
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