Supplementary Information (SI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2024

Supporting Information for

Photodegradable polyacrylamide tanglemers enable spatiotemporal control over chain lengthening in high-strength and low-hysteresis hydrogels

Joshua S. Lee^{1,*}, Bruce E. Kirkpatrick^{1,2,3,*}, Abhishek P. Dhand⁴, Lea Pearl Hibbard¹, Benjamin R. Nelson^{1,2}, Nathaniel P. Skillin^{1,2,3}, Makayla C. Johnson¹, Dilara Batan^{2,5}, Benjamin D. Fairbanks¹, Timothy J. White^{1,6}, Christopher N. Bowman^{1,6}, Jason A. Burdick^{1,2,6}, Kristi S. Anseth^{1,2,6,#}

*equal contribution

[#]corresponding author, <u>kristi.anseth@colorado.edu</u>
¹Department of Chemical and Biological Engineering, University of Colorado Boulder
²BioFrontiers Institute, University of Colorado Boulder
³Medical Scientist Training Program, University of Colorado Anschutz Medical Campus
⁴Department of Bioengineering, University of Pennsylvania
⁵Department of Biochemistry, University of Colorado Boulder
⁶Materials Science and Engineering Program, University of Colorado Boulder

Contents

Supplementary Figures S1-10 Captions for Movies S1-3

Supplementary Figures

Fig. S1 | The first derivative of the stress-strain curve (differential modulus) illustrates strain-stiffening behavior that occurs after 250% strain, marking the limit of extensibility after which physical entanglements begin to accumulate at covalent crosslinkers.

Fig. S2 | Cyclic loading to 500% strain and unloading of diPDA-crosslinked tanglemers identifies increased hysteresis (10-20%) compared to lower strains.

Fig. S3 | Tanglemers prepared from PEG 35 kDa diacrylate are soft, have low fracture strength, and show visible phase separation (indicated by gel opacity).

Fig. S4 | In situ photodegradation of tanglemers under strain increases extensibility but reduces fracture strength.

Fig. S5 | Calculated oNB degradation with varied quantum yield (QY), assuming first-order kinetics, a molar extinction coefficient of 4300 M⁻¹ cm⁻¹ at 365 nm, PEG-diPDA concentration of 0.0125 wt%, and an intensity of 100 mW/cm².

Fig. S6 | Raw data of oNB tanglemer photodegradation (left) and modulus normalized to 0s of irradiation (right).

Fig. S7 | Images of tanglemers prepared with and without crosslinker, showing dramatic swelling in samples without entanglement-stabilizing covalent crosslinks.

Fig. S8 | Vinyl photomasks affixed to glass slides (left) and tanglemers patterned using these masks and equilibrated following light exposure (right), showing varied swelling depending on spatial exposure.

Fig. S9 | Macro image of tanglemers spatially patterned by either oNB cleavage or Fe³⁺ oxidation.

Fig. S10 | Macro image of tanglemer exposed to 365 nm light at 100 mW/cm² for varied times (used for FRAP characterization), showing varied swelling depending on temporal exposure.

Movie Captions

Movie S1. | Reduced strain-induced birefringence is observed in diPDA-crosslinked tanglemers following photodegradation.

Movie S2. | Through-thickness photo-oxidation of diAcm-crosslinked tanglemers results in complete degradation of the network.

Movie S3. | Reverse gelation of pre-irradiated diPDA-crosslinked tanglemers via photo-oxidation.