Double Network Hydrogels Encapsulating Genetically Modified Dedifferentiated Chondrocytes for Auricular Cartilage Regeneration

Yang Liu^a, Xiaoting Chen^b, Xueqin Tan^a, Yeqian Huang^a, Wen Zhang^c, Zhicun Wang^c, Li Yang^c, Yunbing Wang^{c,*}, Zhengyong Li^{a,*} and Xingdong Zhang^c

^a Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.

^b Animal Experimental Center, West China Hospital, Sichuan University, Chengdu 610041, China.

° National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.

Corresponding authors:

Yunbing Wang, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China. E-mail: yunbing.wang@scu.edu.cn.

Zhengyong Li, Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu 610041, China. E-mail: lizydd@wchscu.edu.cn.

Supporting Figures

Fig. S1. Immunofluorescence staining of hypertrophic chondrocyte markers (Col X) was performed in chondrocytes at different passage numbers with or without PG/pRunx1 nanoparticles treatment. Scale

Fig. S2. RT-qPCR detection of hypertrophic chondrocyte markers (Col X) in chondrocytes at different passage numbers with or without PG/pRunx1 nanoparticles treatment.

Fig. S3. Quantitative analysis of mean DCF fluorescence intensity in chondrocytes at different passage numbers with or without PG/pRunx1 nanoparticles treatment.

Fig. S4. The top 30 GO terms of the downregulated genes related to ER stress and cartilage regeneration in chondrocytes versus chondrocytes treated PG/pRunx1 nanoparticles.

Fig. S5. The scanning electron microscopy (SEM) images displayed the different crosslinked hydrogels based on Chs-GMA-CHO and Gel-CDH. Scale bars=100 μm.

Fig. S6. The cell viability measurement of chondrocytes embedded in the different crosslinked hydrogels by CCK-8.

Fig. S7. Representative immunohistochemistry images of IL-1 β , IL-6, and TNF- α in the hypodermis one week after hydrogels implantation. Scale bars= 100 μ m.

Fig. S8. Representative hematoxylin–eosin staining of the major organs (heart, liver, spleen, lung and kidney) of rats 1 weeks after subcutaneous implantation. Scale bars=50 µm.

Fig. S9. The elastin in chondrocyte-encapsulated hydrogel disks were investigated with EvG staining, scale bars= $200 \ \mu m$.

Genes	Forward primer	Reverse primer	
GAPDH	5-CGTCAAAGGTGGAGGAGTG-3	5-GAAGCTCACTGGCATGGC-3	
Collagen 2A1	5-AGGTCACAGAGGTTATCCAG-3	5-GTCCGTCCTCTTTCACCAG-3	
Aggrecan	5-TAAATACGGTGCTGCTGGC-3	5-TGGTGTGAGGACGTATGGC-3	
SOX9	5-TCTGGAGACTTCTGAACGAGAGC-3	5-TGTAATCCGGGTGGTCCTTC-3	
MMP13	5-CCTTCAAAGTTTGGTCCGATG-3	5-TCAAATGGGTAGAAGTCGCC-3	
Collagen X	5-AGGAATGCCTGTGTCTGCTT-3	5-ACAGGCCTACCCAAACATGA-3	
ATF4	5-ATGGATTTGAAGGAGTTCGACT-3	5-AGAGATCACAAGTGTCATCCAA-3	
Runx1	5-GTGGTCCTACGATCAGTCCT-3	5-GTTCTGCAGAGAGGGTTGTC-3	

Table S1. Primers for qRT-PCR.

 Table S2. Composition of hydrogels.

Sample	Chs-GMA- CHO (mg)	Gel-CDH (mg)	PEO (mg)	LAP (mg)	PBS (mL)
Hydrogel-5 (Gel-5)	250	750	50	12.5	5
Hydrogel-10 (Gel-10)	500	750	50	12.5	5
Hydrogel-20 (Gel-20)	1000	750	50	12.5	5