Supporting Information

In-situ dressing based on a D– π –A structured aggregation-induced

emission photosensitizer for healing infected wounds

Yu Ma^a, Jiawei You^b, Jianquan Hou^b, Yupeng Shi^c, and Engui Zhao^{a*}

^a School of Biomedical Engineering and Digital Health, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China

^b Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China

^c Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China

Correspondence

Engui Zhao, School of Science, Harbin Institute of Technology, Shenzhen, HIT Campus of University Town, Shenzhen 518055 P. R. China

E-mail: zhaoengui@hit.edu.cn

Fig. S1 (a) Time-dependent fluorescence spectra of both DCFH (40 μ M) and DTTPB (10 μ M) under white-light irradiation. Power of irradiation light: 36 mW/cm² (b) time-dependent fluorescence spectra of both DCFH (40 μ M) and RB (10 μ M) under white-light irradiation. Power of irradiation light: 36 mW/cm². (c) Time-dependent fluorescence spectra of DCFH (40 μ M) in PBS under white-light irradiation.

Fig. S2 (a) Time-dependent fluorescence spectra of DTTPB (2 μ M) and DHR123 (5 μ M). (b) Time-dependent fluorescence spectra of DTTPB (2 μ M). (c) Time-dependent fluorescence spectra DHR123 (5 μ M). Power of irradiation light: 36 mW/cm².

Fig. S3 (a) Time-dependent fluorescence intensity of RB (10 μ M) and HPF (5 μ M). (b) Time-dependent fluorescence intensity of DTTPB (10 μ M) and HPF (5 μ M). (c) Time-dependent fluorescence spectra of DTTPB (10 μ M). (d) Time-dependent fluorescence spectra of HPF (10 μ M). Power of irradiation light: 36 mW/cm².

Fig. S4 Imaging of HeLa cells stained with DTTPB (red) at (a) 5 μM and (b) 10 $\mu M,$ respectively, for 1 h.

Fig. S5 Zeta potentials of *S. epidermidis* and *E. coli* in H_2O pretreated with and without DTTPB (5 μ M) and light irradiation (36 mW/cm²) for 10 min.

Fig. S6 (a) The corresponding change in wound area calculated from wound images. The error bars (n = 3) represent means \pm SD. (b) Body weight of BALB/c mice with various treatments. The error bars (n = 3) represent means \pm SD.

Fig. S7 H&E staining of different tissues (heart, liver, lung, kidney, and spleen) from bacterial-infected mice in the wound healing assay treated with or without DTTPB-mediated PDT.

Fig. S8 (a) H&E staining of *E. coli* and *S. epidermidis*-infected wounds in the presence of PBS, DTTPB@gel without light irradiation (Dark), or DTTPB@gel with white-light irradiation (Light).

Fig. S9 H&E staining of different tissues (heart, liver, lung, kidney, and spleen) from bacterial infected mice in the wound healing assay treated with or without DTTPB@gel-mediated PDT.