Supplementary Information (SI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Stimuli-Responsive Benzothiazole-Phenothiazine derivatives: Mechanochromism, AIE, Acid Sensing, and Anticancer Efficacy in Benzo[a]pyrene-Induced Cancer Models

Ramakant Gavale,^a Siddharth Singh,^b Anupama Ekbote,^a Hem Chandra Jha^{*b} and Rajneesh Misra^{*a}

^a Department of chemistry, Indian Institute of Technology Indore,

Indore 453552 (India)

E-mail: rajneeshmisra@iiti.ac.in

^b Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore,

Indore 453552 (India)

hemcjha@iiti.ac.in

(* Corresponding author)

I.	Experimental SectionS3
П.	Solvatochromism
III.	Aggregation Induced Emission (AIE)S6-S7
IV.	PRXD Studies
V.	Single Crystal X-ray analysisS8
VI.	Crystallographic DataS9-S10
VII.	TD-DFT TableS11

VIII.	Thermogravimetric Analysis (TGA)S11
IX.	AcidochromismS12
X.	Cytotoxicity and transcript expression analysis in HEK293 cells
XI.	Effect of compounds on oxidative stress in HEK293 cellsS14
XII.	Effect of compounds on apoptosis in HEK293 cellsS15
XIII.	Effects of co-exposure to B[a]P and compounds on protein expression in
	HEK293 cellsS16
XIV.	The raw images for the western blot data shown in fig.12
XV.	The raw images for the western blot data shown in fig. S10S18-S19
XVI.	ADMET properties prediction using admetSAR 3.0S20S21
XVII.	Toxicity of the compounds predicted using the ProTox-III
XVIII.	SuperPRED target prediction of probable macromolecular targets for
	compounds
XIX.	Primer sequence for qRT-PCRS29
XX.	The drug vs. normalized response dataS29
XXI.	Copies of ¹ H NMR, ¹³ C NMR and HRMS spectra of new compoundsS30-S35
XXII.	DFT and TD-DFT dataS36-S61

Experimental Section

Scheme S1 Synthetic scheme for Intermediate BT-PTZ-Br and BT-PTZO-Br.

Solvatochromism:

Fig. S1 UV- vis absorption Spectra of (A) **BT-PTZ-1**, (B) **BT-PTZ-2**, (C) **BT-PTZO1** and (D) **BT-PTZO-2** in different polarity of solvents respectively.

Compound	Solvent	λ_{abs} (nm) ^a	λ_{em} (nm) ^a	Stokes shift (cm ⁻¹)	Øf ^b
	Teluce	202	545	(0.11)	0.55
	Toluene	393	515	6028	0.55
	1,4 Dioxane	393	539	6893	0.60
	Tetrahydrofuran	394	546	7065	0.56
BT-PTZ-1	Chloroform	395	550	7135	0.58
	Dichloromethane	395	550	7135	0.61
	DMSO	402	567	7239	0.31
	Toluene	392	529	6607	0.58
	1,4 Dioxane	393	537	6824	0.62
BT-PTZ-2	Tetrahydrofuran	393	543	7029	0.60
	Chloroform	394	548	7132	0.64
	Dichloromethane	394	558	7459	0.62
	DMSO	401	572	7455	0.66
	Toluene	364	493	7189	0.35
DT DT70 1	1,4 Dioxane	366	482	6576	0.40
Ы-Р120-1	Tetrahydrofuran	367	522	8090	0.31
	Chloroform	364	508	7787	0.34
	Dichloromethane	365	405	2706	0.11
	DMSO	373	415	2713	0.06
	Toluene	377	429	3215	0.22
PT DT70 2	1,4 Dioxane	374	441	4062	0.31
DI-F12U-2	Tetrahydrofuran	376	490	6187	0.57
	Chloroform	377	489	6076	0.53
	Dichloromethane	376	529	7692	0.55

 Table S1 Photophysical properties of the compounds BT-PTZ-1, BT-PTZ-2, BT-PTZO1 and BT-PTZO-2

	DMSO	381	599	9552	0.10

(*^a* absorption and emission maxima values recorded in different polarity solvents, *^b* the fluorescence quantum yields were measured using quinine sulphate as a standard in $0.5 \text{ M H}_2\text{SO}_4$).

Aggregation Induced Emission (AIE)

Fig. S2 Absorption spectra of (A) BT-PTZ-1, (B) BT-PTZ-2, (C) BT-PTZO-1, and (D) BT-PTZO-2 in different THF- Water Mixture with increasing water percentage.

Aggregation Induced Emission (AIE)

Fig. S3 Emission spectra of A) BT-PTZ-2 and D) BT-PTZO-1 in different THF-Water Mixture with increasing water percentage (Inset: Photographs under 365 nm UV illuminations.)

Water Vol %	$\phi_{f}{}^{a}$				
	BT-PTZ-1	BT-PTZ-2	BT-PTZO-1	BT-PTZO-2	
0%	0.45	0.44	0.22	0.39	
10%	0.41	0.45	0.02	0.11	
20%	0.42	0.43	0.02	0.09	
30%	0.40	0.43	0.02	0.09	
40%	0.39	0.42	0.02	0.06	
50%	0.33	0.40	0.02	0.05	
60%	0.25	0.45	0.03	0.05	
70%	0.28	0.46	0.06	0.35	
80%	0.43	0.39	0.08	0.32	
90%	0.25	0.40	0.06	0.30	

Table S2. Fluorescence quantum yields of BT-PTZ-1, BT-PTZ-2, BT-PTZO-1, and BT-PTZO-2 in
different THF-water mixtures with increasing water percentage.

(^aFluorescence quantum yields recorded using quinine sulphate as a standard in 0.5 M H2SO4 solution.)

Fig. S4 PXRD curves of (A) BT-PTZ-1, (B) BT-PTZ-2, (C) BT-PTZO-1 and (D) BT-PTZO-2 in pristine, ground, and fumed form

Fig. S5 A) and B) crystal packing diagram of **BT-PTZO-2** depicting intermolecular interactions, C) and D) Crystal packing of **BT-PTZO-2** and different dimeric interactions.

Crystallographic data

The crystal and refinement data are summarized in Table S2. The CCDC number **2252673** contains the supplementary crystallographic data for BT-PTZO-2. These data can be obtained free of charge via www.ccdc.cam.ac.uk (or from the Cambridge Crystallographic Data Centre, 12 union Road, Cambridge CB21 EZ, UK; Fax: (+44) 1223- 336-033; or deposit@ccdc.cam.ac.uk)

Identification code	shelx
Empirical formula	C40 H31 N3 O2 S2
Formula weight	649.80
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system, space group	Triclinic, P -1
a/(A°)	8.0182
b/(A°)	14.2098
c/(A°)	15.2021
Alpha/(°)	85.714
Beta/(°)	83.289
Gamma/(°)	80.170
Volume	1692.30(18) A ³
Z, Calculated density	2, 1.275 Mg/m ³
Absorption coefficient	0.197 mm ⁻¹
F(000)	680
Crystal size	0.400 x 0.350 x 0.320 mm
Theta range for data collection	3.048 to 29.840 deg.
Reflections collected / unique	16587 / 8026 [R(int) = 0.0844]
Completeness to theta	25.242 99.5 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	8026 / 35 / 491
Goodness-of-fit on F ²	1.031
Final R indices [I>2sigma(I)]	R1 = 0.0784, wR2 = 0.2177
R indices (all data)	R1 = 0.1409, wR2 = 0.2903
Extinction coefficient	n/a
Largest diff. peak and hole	0.333 and -0.506 e.A ⁻³

 Table S3 Crystal data and structure refinement for BT-PTZO-2.

Table S4 The computed vertical transitions; oscillator strengths and configurations of BT-PTZ-1, BT-PTZ-2, BT-PTZO-1 and BT-PTZO-2.

Compound	Wavelength (nm)	f ^a	Configuration	Assignment
	301	0.7478	(HOMO-2)→LUMO(0.4689)	π-π*
BT-PTZ-1	377	0.1440	HOMO→(LUMO+2)(0.6167)	ICT
	319	0.7456	(HOMO-2)→LUMO(0.6157)	π-π*
BT-PTZ-2	374	0.4870	HOMO→(LUMO+1)(0.6496)	ICT
	295	0.2347	(HOMO-3)→LUMO(0.1516)	π-π*
BT-PTZO-1	356	0.6204	HOMO→(LUMO+2)(0.5145)	ICT
	294	0.2175	(HOMO-2)→LUMO(0.5898)	π-π*
BT-PTZO-2	370	0.7139	HOMO→(LUMO+2)(0.6535)	ICT

^aOscillator strength.

Thermal Properties

Fig. S6 Thermogravimetric analysis (TGA) of **BT-PTZ-1**, **BT-PTZ-2**, **BT-PTZO-1** and **BT-PTZO-2** measured at a heating rate of 10 °C min⁻¹ under a nitrogen atmosphere.

Fig. S7 Emission photographs of BT-PTZ-1, BT-PTZ-2, BT-PTZO-1 and BT-PTZO-2 in response to TFA.

Fig. S8 Cytotoxicity and transcript expression analysis in HEK293 cells. (A) Cytotoxicity assessment via MTT assay of HEK293 cells after 24-hour exposure to the compounds. (B) Heat map depicting relative transcript expression of mitochondrial-associated markers (*drp1, fis1, mff, mfn1, opa1*) and cell death-associated markers (*fadd, apaf1*) in HEK293 cells. Cells were pre-exposed to B[a]P for 24 hours, followed by compound treatment for an additional 24 hours. Experiments were conducted with three biological replicates and two technical replicates. Results are presented as the mean \pm standard deviation (SD). Statistical analysis was performed using an unpaired t-test, with p-values calculated using GraphPad Prism version 9.5.1. Statistically significant p-values were denoted as follows: * or # (p < 0.05), ** or ## (p < 0.01), and *** or ### (p < 0.001), indicating upregulation or downregulation, respectively.

Fig. S9 Effect of compounds on oxidative stress in HEK293 cells. (A) Fluorescence microscopy image of HEK293 cells stained with H2DCFDA dye, following 24-hour pre-exposure to B[a]P and subsequent 24-hour treatment with compounds. (B) Quantification of fluorescence intensities of the green signal in HEK293 cells. Experiments were conducted with three biological replicates and two technical replicates. Results are presented as the mean \pm standard deviation (SD). Statistical analysis was performed using an unpaired t-test, with p-values calculated using GraphPad Prism version 9.5.1. Statistically significant p-values were denoted as follows: * or # (p < 0.05), ** or ## (p < 0.01), and *** or #### (p < 0.001), indicating upregulation or downregulation, respectively.

Fig. S10 Effect of compounds on apoptosis in HEK293 cells. (A) Representative image displaying live (green), necrotic (red), and early/late apoptotic (orange/yellow) cells as detected by AO/EB staining under fluorescence microscopy. (B) Bar graph quantifying live, necrotic, early, and late apoptotic cells in HEK293 cells following 24-hour pre-exposure to B[a]P and subsequent 24-hour compound treatment. Experiments were conducted with three biological replicates. Results are presented as mean \pm standard deviation (SD). Statistical analysis was performed using an unpaired t-test, with p-values calculated using GraphPad Prism version 9.5.1. Statistically significant p-values are denoted as follows: * or # (p < 0.05), ** or ## (p < 0.01), and *** or ### (p < 0.001), indicating upregulation or downregulation, respectively.

Fig. S11 Effects of co-exposure to B[a]P and compounds on DRP1, MFN1, p53, β -Catenin, and pNF- κ B expression in HEK293 cells. (A) Representative Western blot image displaying the expression levels of DRP1, MFN1, p53, β -catenin, and pNF- κ B following 24-hour pre-exposure to B[a]P and subsequent 24-hour treatment with compounds. (B) Bar graph quantifying the Western blot results. Experiments were conducted with three biological replicates and two technical replicates. Results are presented as mean \pm standard deviation (SD). Statistical analysis was performed using an unpaired t-test, with p-values calculated using GraphPad Prism version 9.5.1. Statistically significant p-values are denoted as follows: * or # (p < 0.05), ** or ## (p < 0.01), and *** or ### (p < 0.001), indicating upregulation or downregulation, respectively.

1] DRP1

2] MFN1

5] β-catenin

6] GAPDH

Fig. S12 The raw images for the western blot data shown in fig.12.

1] DRP1

3] P53

5] β-catenin

2] MFN1

4] <u>pNF</u>-κβ

6] GAPDH

Fig. S13 The raw images for the western blot data shown in fig. S10.

Name	BT-PTZ-1	BT-PTZ-2	BT-PTZO-1	BT-PTZO-2	
MW	613.17	617.2	645.16	649.19	
Vol	626.3902527	651.8598071	643.9707066	669.440261	
Dense	0.978894543	0.946829354	1.001846813	0.969750458	
nHA	3	3	5	5	
nHD	0	0	0	0	
TPSA	19.37	19.37	53.51	53.51	
nRot	6	7	6	7	
nRing	4	4	4	4	
MaxRing	14	14	14	14	
nHet	6	5	8	7	
fChar	0	0	0	0	
nRig	42	44	44	46	
Flex	0.142857143	0.159090909	0.136363636	0.152173913	
nStereo	0	0	0	0	
gasa	1	0	0	0	
QED	0.186	0.177	0.18	0.172	
Synth	2.882	2.71	3.039	2.87	
Fsp3	0.162	0.075	0.162	0.075	
MCE-18	80	78	86	84	
Natural Product-likeness	-1.07	-1.157	-1.232	-1.194	
Chelating	['-']	['-']	['-']	['-']	
PAINS	['-']	['-']	['-']	['-']	
Lipinski	1	1	1	1	
Pfizer	1	1	1	1	
GSK	1	1	1	1	
GoldenTriangle	1	1	1	1	
logS	-11.70470785	-12.49938122	-9.33835679	-9.982755029	
logD	5.019515919	5.860358902	4.086822113	4.738757919	
logP	10.88641515	11.69051075	8.19915726	9.070230435	
mp	267.8534865	298.4897542	219.1994953	255.2865362	
bp	610.8250513	653.9644682	557.2079704	590.1259137	
pka_acidic	14.94742829	14.59363633	12.44511574	12.39267053	
pka_basic	0.866336438	-0.198443628	1.512711917	0.671159463	
caco2	-4.662304949	-4.998146451	-4.748760471	-5.167901826	
МДСК	-4.810895703	-4.577096363	-4.829729335	-4.761904682	
РАМРА	0.002405705	0.007756432	0.019457929	0.054873306	
pgp_inh	0.960912108	0.913223684	0.962376952	0.925488174	
pgp_sub	0.878201783	0.504688263	0.238809392	0.053119496	
hia	1.19E-06	9.54E-07	1.43E-06	1.19E-06	
f20	0.908893771	0.054148018	0.949379977	0.09885639	
f30	0.847859979	0.037126482	0.955377143	0.153490484	
f50	0.99987648	0.791023985	0.999018654	0.331597924	
OATP1B1	0.906186938	0.987992525	0.488739312	0.884528637	

 Table S5 ADMET properties prediction using admetSAR 3.0

Name	BT-PTZ-1	BT-PTZ-2	BT-PTZO-1	BT-PTZO-2
OATP1B3	0.968854427	0.984597564	0.12046627	0.216627389
BCRP	0.685575366	0.800441444	0.008124067	0.015747594
BSEP	1	1	1	1
BBB	0.865089655	0.020429241	0.02347986	7.95E-05
MRP1	0.984040618	0.974593639	0.985419691	0.972355604
PPB	100.2261662	100.4139467	99.76397466	99.83210228
logVDss	1.103490089	1.158085668	0.023477166	-0.034064217
Fu	0.22889294	0.110121911	0.237394354	0.146803202
CYP1A2-inh	0.999164701	0.994454324	0.999860764	0.996490777
CYP1A2-sub	1	0.999267757	1	0.993070304
CYP2C19-inh	0.999999762	0.999999642	0.999843955	0.999188364
CYP2C19-sub	0.709028244	2.30E-05	0.996316791	0.002842188
CYP2C9-inh	0.147088066	0.959410667	0.06779772	0.934987187
CYP2C9-sub	0.990382016	7.91E-05	0.968025744	3.43E-05
CYP2D6-inh	0.999931455	0.951596081	0.99946636	0.577515483
CYP2D6-sub	0.999994993	0.98550421	0.983913004	0.006810627
CYP3A4-inh	0.995847583	0.999016643	0.991821826	0.996976256
CYP3A4-sub	0.993088663	0.79436779	0.60070926	0.023552533
CYP2B6-inh	0.999995232	1	0.99998498	1
CYP2B6-sub	0.963571727	0.000167654	0.723377585	2.67E-05
CYP2C8-inh	0.999999881	1	0.999965787	1
LM-human	0.999774635	0.998904943	0.999896288	0.999489903
cl-plasma	6.530465614	4.17422271	5.129742703	3.154428946
t0.5	0.249020897	0.427587069	0.258036386	0.412301049
BCF	2.178975535	2.432112095	1.715559827	2.082505506
IGC50	5.825891509	5.679155321	5.229168985	5.090145472
LC50DM	8.038096167	7.389901092	7.044876433	6.530842341
LC50FM	8.608012446	7.692378945	7.06376808	6.382762877
hERG	0.968768179	0.859173656	0.910451889	0.667252421
hERG-10um	0.970196962	0.97993958	0.938197732	0.958041131
DILI	0.999999762	0.999966621	0.999998569	0.999805868
Ames	0.845941484	0.606791556	0.895098686	0.703343034
ROA	0.768248916	0.188905492	0.611992657	0.100664765
FDAMDD	0.878722727	0.92618525	0.959279895	0.976564288
SkinSen	0.999423027	0.997296751	0.971316516	0.885920644
Carcinogenicity	0.759638608	0.927610993	0.839057922	0.954525828
EC	2.18E-11	3.22E-09	1.52E-09	2.19E-07
EI	0.003794322	0.242738515	0.00649927	0.353414029
Respiratory	0.999424815	0.997999966	0.981661201	0.940068185
H-HT	0.730246782	0.957393587	0.792500019	0.968467832
Neurotoxicity-DI	0.996783972	0.999698281	0.992272019	0.999281108
Ototoxicity	0.618860006	0.977191687	0.510903001	0.964516878
Hematotoxicity	0.771644533	0.944673061	0.571428835	0.870358348
Nephrotoxicity-DI	0.919334769	0.997553289	0.847280383	0.994819582
Genotoxicity	0.996340156	1	0.99987042	1
RPMI-8226	0.258406132	0.174673721	0.238864124	0.157971382
A549	0.979188859	0.801273227	0.642495215	0.135120347

Name	BT-PTZ-1	BT-PTZ-2	BT-PTZO-1	BT-PTZO-2
НЕК293	0.998480499	0.999415994	0.984270394	0.993897736
NR-AhR	0.999437988	0.999715149	0.999381423	0.999614477
NR-AR	0.633356512	0.034468368	0.809978366	0.084733702
NR-AR-LBD	0.736457109	0.602147996	0.924707174	0.843703151
NR-Aromatase	0.88047272	0.949086547	0.67497015	0.818391204
NR-ER	0.874230206	0.989339411	0.815588236	0.982480943
NR-ER-LBD	0.008729187	0.424299031	0.002148574	0.126872644
NR-PPAR-gamma	0.820520997	0.273231506	0.78676033	0.241994783
SR-ARE	0.991290092	0.999235868	0.988200784	0.99896121
SR-ATAD5	0.540379882	0.678446531	0.386974961	0.523831546
SR-HSE	0.836855471	0.955584586	0.38260895	0.720810235
SR-MMP	0.99975425	0.999985933	0.999475896	0.999961376
SR-p53	0.959701538	0.969572246	0.780841172	0.795073628
NonBiodegradable	['-']	[(12,)]	['-']	[(12,)]
NonGenotoxic_Carcinogenic ity	['-']	['-']	['-']	['-']
SureChEMBL	['-']	['-']	['-']	['-']
LD50_oral	[(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 40, 41, 42)]	[(2, 3, 4, 5, 6, 7, 27, 28, 29, 30, 31, 32, 42, 43, 44)]	[(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 42, 43, 44)]	[(2, 3, 4, 5, 6, 7, 27, 28, 29, 32, 33, 34, 44, 45, 46)]
Skin_Sensitization	[(23, 24, 25, 26, 27, 28, 29, 30, 31, 32)]	[(32, 33, 34, 35, 36, 37, 38, 39, 40, 41)]	[(25, 26, 27, 28, 29, 30, 31, 32, 33, 34)]	[(34, 35, 36, 37, 38, 39, 40, 41, 42, 43)]
Acute_Aquatic_Toxicity	['-']	['-']	['-']	['-']
Toxicophores	[(3, 4, 5, 6, 7, 8, 9), (32, 31, 26, 25, 24)]	[(3, 4, 5, 6, 7, 27, 28), (41, 40, 35, 34, 33)]	[(3, 4, 5, 6, 7, 8, 9), (34, 33, 28, 27, 26)]	[(3, 4, 5, 6, 7, 27, 28), (43, 42, 37, 36, 35)]
Carcinogenicity_Mutagenici ty	[(4, 3)]	[(4, 3)]	[(4, 3)]	[(4, 3)]
Aggregators	1	1	1	1
Fluc	0.969	0.902	0.87	0.796
Blue_fluorescence	0.98	0.966	0.904	0.934
Green_fluorescence	0.999	1	0.999	1
Reactive	0.541	0.228	0.195	0.049
Other_assay_interference	0.906	0.697	0.88	0.677
Promiscuous	0.453	0.097	0.053	0.004

Parameters		BT-PTZ-1		BT-PTZ-2		BT-PTZO-1		BT-PTZO-2	
Classification	Target	Prediction	Probability	Prediction	Probability	Prediction	Probability	Prediction	Probability
Organ toxicity	Hepatotoxicity	Inactive	0.56	Inactive	0.56	Inactive	0.62	Inactive	0.58
Organ toxicity	Neurotoxicity	Active	0.81	Active	0.78	Active	0.62	Active	0.57
Organ toxicity	Nephrotoxicity	Inactive	0.82	Inactive	0.83	Inactive	0.62	Inactive	0.62
Organ toxicity	Respiratory toxicity	Active	0.84	Active	0.84	Active	0.79	Active	0.8
Organ toxicity	Cardiotoxicity	Inactive	0.93	Inactive	0.92	Inactive	0.82	Inactive	0.81
Toxicity end points	Carcinogenicity	Inactive	0.76	Inactive	0.69	Inactive	0.65	Inactive	0.61
Toxicity end points	Immunotoxicity	Inactive	0.86	Inactive	0.88	Inactive	0.97	Inactive	0.99
Toxicity end points	Mutagenicity	Inactive	0.57	Active	0.51	Inactive	0.56	Inactive	0.53
Toxicity end points	Cytotoxicity	Inactive	0.62	Inactive	0.65	Inactive	0.56	Inactive	0.57
Toxicity end points	BBB-barrier	Active	0.92	Active	0.91	Active	0.92	Active	0.9
Toxicity end points	Ecotoxicity	Active	0.77	Active	0.76	Inactive	0.56	Inactive	0.58
Toxicity end points	Clinical toxicity	Inactive	0.52	Active	0.55	Active	0.54	Active	0.61
Toxicity end points	Nutritional toxicity	Inactive	0.73	Inactive	0.71	Inactive	0.67	Inactive	0.66
Tox21-Nuclear receptor signalling pathways	Aryl hydrocarbon Receptor (AhR)	Inactive	0.75	Inactive	0.6	Inactive	0.83	Inactive	0.82
Tox21-Nuclear receptor signalling pathways	Androgen Receptor (AR)	Inactive	0.9	Inactive	0.9	Inactive	0.95	Inactive	0.95
Tox21-Nuclear receptor signalling pathways	Androgen Receptor Ligand Binding Domain (AR-LBD)	Inactive	0.93	Inactive	0.92	Inactive	0.95	Inactive	0.94
Tox21-Nuclear receptor signalling pathways	Aromatase	Inactive	0.85	Inactive	0.85	Inactive	0.93	Inactive	0.91
Tox21-Nuclear receptor signalling pathways	Estrogen Receptor Alpha (ER)	Inactive	0.88	Inactive	0.83	Inactive	0.87	Inactive	0.86
Tox21-Nuclear receptor signalling pathways	Estrogen Receptor Ligand Binding Domain (ER-LBD)	Inactive	0.96	Inactive	0.95	Inactive	0.93	Inactive	0.92
Tox21-Nuclear receptor signalling pathways	Peroxisome Proliferator Activated Receptor Gamma (PPAR-Gamma)	Inactive	0.92	Inactive	0.91	Inactive	0.94	Inactive	0.93
Tox21-Stress response pathways	Nuclear factor (erythroid-derived 2)-like 2/antioxidant responsive element (nrf2/ARE)	Inactive	0.93	Inactive	0.93	Inactive	0.93	Inactive	0.93
Tox21-Stress response pathways	Heat shock factor response element (HSE)	Inactive	0.93	Inactive	0.93	Inactive	0.93	Inactive	0.93
Tox21-Stress response pathways	Mitochondrial Membrane Potential (MMP)	Inactive	0.69	Inactive	0.66	Inactive	0.77	Inactive	0.76
Tox21-Stress response pathways	Phosphoprotein (Tumor Supressor) p53	Inactive	0.77	Inactive	0.75	Inactive	0.9	Inactive	0.89
Tox21-Stress response pathways	ATPase family AAA domain-containing protein 5	Inactive	0.9	Inactive	0.83	Inactive	0.92	Inactive	0.86

 Table S6: Toxicity of the compounds predicted using the ProTox-III

Parameters			BT-PTZ-1		BT-PTZ-2		BT-PTZO-1		BT-PTZO-2	
Classification	Target	Prediction Probability		Prediction	Probability	Prediction	Probability	Prediction	Probability	
	(ATAD5)									
Molecular Initiating Events	Thyroid hormone receptor alpha (THRα)	Inactive	0.9	Inactive	0.9	Inactive	0.9	Inactive	0.9	
Molecular Initiating Events	Thyroid hormone receptor beta (THRÎ ²)	Inactive	0.78	Inactive	0.78	Inactive	0.78	Inactive	0.78	
Molecular Initiating Events	Transtyretrin (TTR)	Inactive	0.97	Inactive	0.97	Inactive	0.97	Inactive	0.97	
Molecular Initiating Events	Ryanodine receptor (RYR)	Inactive	0.98	Inactive	0.98	Inactive	0.98	Inactive	0.98	
Molecular Initiating Events	GABA receptor (GABAR)	Inactive	0.96	Inactive	0.96	Inactive	0.96	Inactive	0.96	
Molecular Initiating Events	Glutamate N-methyl-D-aspartate receptor (NMDAR)	Inactive	0.92	Inactive	0.92	Inactive	0.92	Inactive	0.92	
Molecular Initiating Events	alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR)	Inactive	0.97	Inactive	0.97	Inactive	0.97	Inactive	0.97	
Molecular Initiating Events	Kainate receptor (KAR)	Inactive	0.99	Inactive	0.99	Inactive	0.99	Inactive	0.99	
Molecular Initiating Events	Achetylcholinesterase (AChE)	Inactive	0.56	Inactive	0.56	Inactive	0.62	Inactive	0.58	
Molecular Initiating Events	Constitutive androstane receptor (CAR)	Inactive	0.98	Inactive	0.98	Inactive	0.98	Inactive	0.98	
Molecular Initiating Events	Pregnane X receptor (PXR)	Inactive	0.92	Inactive	0.92	Inactive	0.92	Inactive	0.92	
Molecular Initiating Events	NADH-quinone oxidoreductase (NADHOX)	Inactive	0.97	Inactive	0.97	Inactive	0.97	Inactive	0.97	
Molecular Initiating Events	Voltage gated sodium channel (VGSC)	Inactive	0.95	Inactive	0.95	Inactive	0.95	Inactive	0.95	
Molecular Initiating Events	Na+/I- symporter (NIS)	Inactive	0.98	Inactive	0.98	Inactive	0.98	Inactive	0.98	
Metabolism	Cytochrome CYP1A2	Active	0.52	Active	0.53	Inactive	0.67	Inactive	0.65	
Metabolism	Cytochrome CYP2C19	Inactive	0.58	Active	0.51	Inactive	0.54	Active	0.5	
Metabolism	Cytochrome CYP2C9	Inactive	0.5	Inactive	0.5	Active	0.57	Active	0.61	
Metabolism	Cytochrome CYP2D6	Active	0.85	Active	0.83	Active	0.61	Active	0.57	
Metabolism	Cytochrome CYP3A4	Inactive	0.72	Inactive	0.65	Inactive	0.6	Inactive	0.54	
Metabolism	Cytochrome CYP2E1	Inactive	0.95	Inactive	0.96	Inactive	0.99	Inactive	0.99	

Table S7 SuperPRED target prediction of probable macromolecular targets for compounds

A)	BT-PTZ-1
----	----------

BT-PTZ-1								
Target Name	ChEMBL-ID	UniProt ID	PDB Visualization	TTD ID	Probability	Model accuracy		
Cathepsin D	CHEMBL2581	P07339	40D9	T67102	0.9905	0.9895		
Kruppel-like factor 5	CHEMBL1293249	Q13887	Not Available	Not Available	0.9793	0.8633		
Nuclear factor NF-kappa-B p105 subunit	CHEMBL3251	P19838	1SVC	Not Available	0.9689	0.9609		
Tyrosyl-DNA phosphodiesterase 1	CHEMBL1075138	Q9NUW8	6N0D	Not Available	0.9655	0.7122		
Cyclooxygenase-2	CHEMBL230	P35354	5F19	Not Available	0.9496	0.8963		
Cyclooxygenase-1	CHEMBL221	P23219	6Y3C	Not Available	0.9354	0.9017		
Beta amyloid A4 protein	CHEMBL2487	P05067	5BUO	T87024	0.9299	0.9674		
G-protein coupled bile acid receptor 1	CHEMBL5409	Q8TDU6	7CFM	T86273	0.9134	0.9365		
Hypoxia-inducible factor 1 alpha	CHEMBL4261	Q16665	4H6J	Not Available	0.8982	0.8514		
Dual specificty protein kinase CLK1	CHEMBL4224	P49759	6KHD	Not Available	0.8979	0.853		
Geranylgeranyl pyrophosphate synthetase CHEMBL4769		O95749	6R4V	Not Available	0.8745	0.9208		
DCN1-like protein 1	CHEMBL4105838	Q96GG9	6BG3	Not Available	0.8621	0.95		
Dual specificity protein phosphatase 3	CHEMBL2635	P51452	3F81	Not Available	0.8571	0.94		
Transmembrane protease serine 6	CHEMBL1795139	Q8IU80	Not Available	Not Available	0.8473	0.9833		
Casein kinase I delta	CHEMBL2828	P48730	6PXN	Not Available	0.8437	0.9308		
Anandamide amidohydrolase	CHEMBL2243	O00519	Not Available	T11754	0.8424	0.9753		
Nuclear receptor ROR-beta	CHEMBL3091268	Q92753	Not Available	Not Available	0.8393	0.955		
Dual-specificity tyrosine- phosphorylation regulated kinase 1A	CHEMBL2292	Q13627	6814	T92803	0.8318	0.9324		
Aminopeptidase N	CHEMBL1907	P15144	4FYT	T67272	0.8305	0.9331		
Signal transducer and activator of transcription 1- alpha/beta	CHEMBL6101	P42224	1YVL	T64205	0.8263	0.7262		
Aldose reductase	CHEMBL1900	P15121	1US0	T26623	0.8196	0.9238		
DNA topoisomerase I	CHEMBL1781	P11387	1K4T	T09826	0.8157	0.97		
Ras-related protein Rab- 9A	CHEMBL1293294	P51151	1WMS	T66350	0.8123	0.8767		
Cytochrome P450 2A6	CHEMBL5282	P11509	2FDV	T06455	0.8123	0.7178		
Nuclear factor erythroid 2- related factor 2	CHEMBL1075094	Q16236	2FLU	Not Available	0.8083	0.96		
GABA-A receptor; alpha- 1/beta-3/gamma-2	CHEMBL2094121	P14867	6HUJ	T51487	0.8003	0.955		

B) BT-PTZ-2

BT-PTZ-2								
Target Name	ChEMBL-ID	UniProt ID	PDB Visualization	TTD ID	Probability	Model accuracy		
Cathepsin D	CHEMBL2581	P07339	40D9	T67102	0.9948	0.9895		
Kruppel-like factor 5	CHEMBL1293249	Q13887	Not Available	Not Available	0.9825	0.8633		
Nuclear factor NF-kappa-B p105 subunit	CHEMBL3251	P19838	1SVC	Not Available	0.9743	0.9609		
Beta amyloid A4 protein	CHEMBL2487	P05067	5BUO	T87024	0.9718	0.9674		
Tyrosyl-DNA phosphodiesterase 1	CHEMBL1075138	Q9NUW8	6N0D	Not Available	0.9669	0.7122		
Protein-tyrosine phosphatase 1B	CHEMBL335	P18031	5QGF	Not Available	0.9575	0.9517		
Cyclooxygenase-1	CHEMBL221	P23219	6Y3C	Not Available	0.9361	0.9017		
Ras-related protein Rab-9A	CHEMBL1293294	P51151	1WMS	T66350	0.9284	0.8767		
HERG	CHEMBL240	Q12809	5VA1	T20251	0.9183	0.8976		
Geranylgeranyl pyrophosphate synthetase	CHEMBL4769	095749	6R4V	Not Available	0.8905	0.9208		
15-hydroxyprostaglandin dehydrogenase [NAD+]	CHEMBL1293255	P15428	2GDZ	Not Available	0.8866	0.8357		
Choline kinase alpha	CHEMBL3117	P35790	4DA5	T55709	0.8728	0.78		
Glyoxalase I	CHEMBL2424	Q04760	3W0T	Not Available	0.8722	0.9167		
Muscarinic acetylcholine receptor M5	CHEMBL2035	P08912	60L9	T79961	0.8688	0.9462		
DCN1-like protein 1	CHEMBL4105838	Q96GG9	6BG3	Not Available	0.8589	0.95		
DNA topoisomerase I	CHEMBL1781	P11387	1K4T	T09826	0.8482	0.97		
Monoamine oxidase A	CHEMBL1951	P21397	2Z5Y	Not Available	0.8436	0.9149		
Calpain 1	CHEMBL3891	P07384	1ZCM	Not Available	0.8416	0.9304		
Nuclear receptor ROR-beta	CHEMBL3091268	Q92753	Not Available	Not Available	0.8411	0.955		
Pregnane X receptor	CHEMBL3401	O75469	6TFI	T82702	0.8366	0.9473		
Aminopeptidase N	CHEMBL1907	P15144	4FYT	T67272	0.8336	0.9331		
G-protein coupled bile acid receptor 1	CHEMBL5409	Q8TDU6	7CFM	T86273	0.8294	0.9365		
Aldose reductase	CHEMBL1900	P15121	1US0	T26623	0.8291	0.9238		
Nuclear factor erythroid 2- related factor 2	CHEMBL1075094	Q16236	2FLU	Not Available	0.8242	0.96		
Signal transducer and activator of transcription 1- alpha/beta	CHEMBL6101	P42224	1YVL	T64205	0.822	0.7262		
Transmembrane protease serine 6	CHEMBL1795139	Q8IU80	Not Available	Not Available	0.8169	0.9833		
Dual specificity protein phosphatase 3	CHEMBL2635	P51452	3F81	Not Available	0.8118	0.94		

C) BT-PTZO-1

BT-PTZO-1								
Target Name	ChEMBL-ID	UniProt ID	PDB Visualization	TTD ID	Probabilit y	Model accuracy		
Cathepsin D	CHEMBL2581	P07339	40D9	T67102	0.9934	0.9895		
Nuclear factor NF-kappa-B p105 subunit	CHEMBL3251	P19838	1SVC	Not Available	0.9691	0.9609		
Kruppel-like factor 5	CHEMBL1293249	Q13887	Not Available	Not Available	0.9595	0.8633		
Tyrosyl-DNA phosphodiesterase 1	CHEMBL1075138	Q9NUW 8	6N0D	Not Available	0.9213	0.7122		
G-protein coupled bile acid receptor 1	CHEMBL5409	Q8TDU 6	7CFM	T86273	0.9186	0.9365		
Hypoxia-inducible factor 1 alpha	CHEMBL4261	Q16665	4H6J	Not Available	0.9182	0.8514		
Nuclear factor erythroid 2-related factor 2	CHEMBL1075094	Q16236	2FLU	Not Available	0.8876	0.96		
Cyclooxygenase-2	CHEMBL230	P35354	5F19	Not Available	0.8814	0.8963		
Dual specificity protein phosphatase 3	CHEMBL2635	P51452	3F81	Not Available	0.8732	0.94		
Cyclooxygenase-1	CHEMBL221	P23219	6Y3C	6Y3C Not Available		0.9017		
15-hydroxyprostaglandin dehydrogenase [NAD+]	CHEMBL1293255	P15428	2GDZ	Not Available	0.8638	0.8357		
Cytochrome P450 2A6	CHEMBL5282	P11509	2FDV	T06455	0.8597	0.7178		
Beta amyloid A4 protein	CHEMBL2487	P05067	5BUO	T87024	0.8515	0.9674		
Signal transducer and activator of transcription 1-alpha/beta	CHEMBL6101	P42224	1YVL	T64205	0.8498	0.7262		
DCN1-like protein 1	CHEMBL4105838	Q96GG9	6BG3	Not Available	0.8471	0.95		
Anandamide amidohydrolase	CHEMBL2243	O00519	Not Available	T11754	0.8435	0.9753		
Butyrylcholinesterase	CHEMBL1914	P06276	5LKR	T99799	0.8399	0.95		
Dual specificty protein kinase CLK1	CHEMBL4224	P49759	6KHD	Not Available	0.8388	0.853		
Transmembrane protease serine 6	CHEMBL1795139	Q8IU80	Not Available	Not Available	0.8351	0.9833		
Aminopeptidase N	CHEMBL1907	P15144	4FYT	T67272	0.8341	0.9331		
Ras-related protein Rab-9A	CHEMBL1293294	P51151	1WMS	T66350	0.828	0.8767		
Aldose reductase	CHEMBL1900	P15121	1US0	T26623	0.8278	0.9238		
DNA topoisomerase I	CHEMBL1781	P11387	1K4T	T09826	0.8267	0.97		
Geranylgeranyl pyrophosphate synthetase	CHEMBL4769	O95749	6R4V	Not Available	0.8195	0.9208		
Proteasome component C5	CHEMBL4208	P20618	6KWY	Not Available	0.8147	0.9		
Calpain 1	CHEMBL3891	P07384	1ZCM	Not Available	0.8068	0.9304		

D) BT-PTZO-2

BT-PTZO-2								
Target Name ChEMBL-ID UniProt ID PDB Visualization TTD ID Probabil								
Cathepsin D	CHEMBL2581	P07339	40D9	T67102	0.996	0.9895		
Nuclear factor NF-kappa-B p105 subunit	CHEMBL3251	P19838	1SVC	Not Available	0.9746	0.9609		
Ras-related protein Rab-9A	CHEMBL1293294	P51151	1WMS	T66350	0.9718	0.8767		
Kruppel-like factor 5	CHEMBL1293249	Q13887	Not Available	Not Available	0.9637	0.8633		
Beta amyloid A4 protein	CHEMBL2487	P05067	5BUO	T87024	0.9539	0.9674		
HERG	CHEMBL240	Q12809	5VA1	T20251	0.9057	0.8976		
Nuclear factor erythroid 2-related factor 2	CHEMBL1075094	Q16236	2FLU	Not Available	0.9018	0.96		
Niemann-Pick C1 protein	CHEMBL1293277	015118	6W5S	Not Available	0.8952	0.8111		
Tyrosyl-DNA phosphodiesterase	CHEMBL1075138	Q9NUW8	6N0D	Not Available	0.8949	0.7122		
Calpain 1	CHEMBL3891	P07384	1ZCM	Not Available	0.8788	0.9304		
15-hydroxyprostaglandin dehydrogenase [NAD+]	CHEMBL1293255	P15428	2GDZ	Not Available	0.8712	0.8357		
Choline kinase alpha	CHEMBL3117	P35790	4DA5	T55709	0.8689	0.78		
Monoamine oxidase A	CHEMBL1951	P21397	2Z5Y	Not Available	0.8667	0.9149		
DNA topoisomerase I	CHEMBL1781	P11387	1K4T	T09826	0.8621	0.97		
Dual specificity protein phosphatase 3	CHEMBL2635	P51452	3F81	Not Available	0.8522	0.94		
T-cell protein-tyrosine phosphatase	CHEMBL3807	P17706	1L8K	Not Available	0.8511	0.93		
Signal transducer and activator of transcription 1-alpha/beta	CHEMBL6101	P42224	1YVL	T64205	0.8435	0.7262		
Geranylgeranyl pyrophosphate synthetase	CHEMBL4769	095749	6R4V	Not Available	0.8412	0.9208		
G-protein coupled bile acid receptor 1	CHEMBL5409	Q8TDU6	7CFM	T86273	0.838	0.9365		
DCN1-like protein 1	CHEMBL4105838	Q96GG9	6BG3	Not Available	0.8364	0.95		
Aminopeptidase N	CHEMBL1907	P15144	4FYT	T67272	0.8269	0.9331		
Pregnane X receptor	CHEMBL3401	O75469	6TFI	T82702	0.8242	0.9473		
Glycine transporter 2	CHEMBL3060	Q9Y345	Not Available	Not Available	0.8242	0.9917		
Protein-tyrosine phosphatase 1B	CHEMBL335	P18031	5QGF	Not Available	0.8202	0.9517		
Transcription intermediary factor 1-alpha	CHEMBL3108638	O15164	4YBM	Not Available	0.81	0.9556		
Cytochrome P450 2A6	CHEMBL5282	P11509	2FDV	T06455	0.8036	0.7178		
Transmembrane protease serine 6	CHEMBL1795139	Q8IU80	Not Available	Not Available	0.803	0.9833		

Table S8 Primer sequence for qRT-PCR

Gene	Primers
dun 1	F- TGGGCGCCGACATCA
urp1	R- GCTCTGCGTTCCCACTACGA
G _m 1	F- TACGTCCGCGGGTTGCT
JISI	R- CCAGTTCCTTGGCCTGGTT
	F- CCAAACGCTGACCTGGAAC
mjj	R- TTTCCTGCTACAACAATCCTCTCC
	F- GGCATCTGTGGCCGAGTT
mjn1	R- ATTATGCTAAGTCTCCGCTCCAA
ong I	F- GTGCTGCCCGCCTAGAAA
0001	R- TGACAGGCACCCGTACTCAGT
	F- CTTGCTGCCCTTCTCCATGA
apaj 1	R- TTGCGAAGCATCAGAATGCG
fadd	F- CACCAAGATCGACAGCATCG
Jaaa	R- AGATTCTCAGTGACTCCCGC
aandh	F- TGCACCAACTGCTTAG
gapan	R- GATGCAGGGATGATGTTC

Table S9 The drug vs. normalized response data were fitted using a four-parameter logistic(4PL) nonlinear regression model to estimate the IC50 value.

Cell Line	Compound	Conc. (µM)
A549	BT-PTZ-1	166.8 µM
A549	BT-PTZ-2	136.6 µM
A549	BT-PTZO-1	157.8 μM
A549	BT-PTZO-2	115.9 μM
HEK	BT-PTZ-1	163.2 μM
HEK	BT-PTZ-2	87.14 μM
HEK	BT-PTZO-1	88.5 μM
HEK	BT-PTZO-2	54.45 μM

Copies of NMR and HRMS spectra of new compounds

¹H NMR and ¹³C NMR of **BT-PTZ-1**

¹H NMR and ¹³C NMR of **BT-PTZ-2**

¹H NMR and ¹³C NMR of **BT-PTZO-1**

¹H NMR and ¹³C NMR of **BT-PTZO-2**

HRMS of BT-PTZ-1 and BT-PTZ-2

HRMS of BT-PTZO-1 and BT-PTZO-2

S35

DFT Calculation data of BT-PTZ-1, BT-PTZ-2, BT-PTZO-1 and BT-PTZO-2

Calculation method: B3LYP/6-31G (d,p) with Gaussian 09

BT-PTZ-1:

Standard orientation:

Center	1	Atomic	Atomic	Coordin	ates (1	Angstron
Numbe	er	Number	Туре	Х	Y	Z
1	6	0	7.522681	-2.744439	-0.02	4962
2	6	0	8.557244	-2.068187	0.66	9570
3	6	0	9.776851	-2.690636	0.94	9498
4	6	0	9.954993	-4.007205	0.52	5153
5	6	0	8.935916	-4.689804	-0.16	4860
6	6	0	7.722086	-4.069868	-0.44	3267
7	6	0	6.461590	-0.810387	0.262	2580
8	1	0	10.565455	-2.168199	1.48	31700
9	1	0	10.894750	-4.510442	0.73	1738
10	1	0	9.100979	-5.714590	-0.4	83496
11	1	0	6.927990	-4.584777	-0.9	74044
12	7	0	6.371091	-2.009537	-0.2	32625
13	16	6 0	8.023905	5 -0.446323	3 1.0	58764
14	6	0	-1.376047	2.682057	0.92	24883
15	6	0	-0.076654	3.177507	0.8	15307
16	6	0	0.892210	2.503977	0.05	54967
17	6	0	0.521289	1.285589	-0.54	45678
18	6	0	-0.766982	0.773982	-0.3	97015
19	6	0	-1.752924	1.472305	0.32	21190

20	6	0	3.166611	0.796974	-0.577935
21	6	0	3.279814	2.079347	0.005167
22	6	0	4.469834	2.386412	0.687200
23	1	0	4.591531	3.352307	1.162414
24	6	0	5.509744	1.463656	0.766100
25	6	0	5.391591	0.189185	0.192645
26	6	0	4.191486	-0.134835	-0.467427
27	1	0	-2.107580	3.254742	1.486405
28	1	0	0.174975	4.100262	1.325615
29	1	0	-0.998836	-0.190664	-0.837711
30	1	0	6.414196	1.745743	1.296855
31	1	0	4.083046	-1.119918	-0.907505
32	7	0	2.213804	2.994574	-0.107862
33	16	0	1.716447	0.417515	-1.543782
34	6	0	-8.310040	-4.125001	0.295056
35	6	0	-8.075086	-2.882339	0.889277
36	6	0	-7.324117	-1.898589	0.224382
37	6	0	-6.773917	-2.218280	-1.033775
38	6	0	-6.979205	-3.475241	-1.605910
39	6	0	-7.767113	-4.427246	-0.954256
40	6	0	-5.051879	-0.224030	-0.506103
41	6	0	-5.779500	-0.090184	0.692930
42	6	0	-5.151022	0.558345	1.767851
43	1	0	-5.664290	0.658907	2.717223
44	6	0	-3.860791	1.071689	1.641808
45	6	0	-3.130749	0.937041	0.450052
46	6	0	-3.750594	0.262301	-0.615874
47	1	0	-8.905804	-4.862070	0.825320

48	1	0	-8.473463	-2.686181	1.878239
49	1	0	-6.530416	-3.698349	-2.569310
50	1	0	-7.940537	-5.395461	-1.413213
51	1	0	-3.403267	1.550858	2.501976
52	1	0	-3.227836	0.144036	-1.560139
53	7	0	-7.091772	-0.613433	0.775404
54	16	0	-5.859753	-0.964522	-1.914163
55	6	0	-8.015339	-0.078441	1.781661
56	6	0	-8.343833	1.409316	1.572349
57	6	0	-9.063211	1.691830	0.248910
58	6	0	2.477778	4.431079	0.043356
59	6	0	3.409062	4.993847	-1.043409
60	6	0	2.826116	4.891596	-2.457086
61	1	0	1.880306	5.440611	-2.537074
62	1	0	3.518726	5.310660	-3.194150
63	1	0	2.632220	3.850029	-2.730430
64	1	0	4.381647	4.491878	-1.007674
65	1	0	3.595640	6.045698	-0.789785
66	1	0	2.869075	4.664613	1.045276
67	1	0	1.515976	4.939373	-0.043292
68	1	0	-8.945318	-0.642538	1.687831
69	1	0	-7.644036	-0.249712	2.804180
70	1	0	-7.431349	2.011731	1.633305
71	1	0	-8.974984	1.718919	2.415830
72	1	0	-9.283878	2.759320	0.145628
73	1	0	-8.450768	1.388584	-0.605555
74	1	0	-10.012941	1.146739	0.190309

BT-PTZ-2:

Standard orientation:

Center	Atomic		Atomic	Coordinate	s (Angstroms)
Number	Numb	er	Туре	X Y	Ζ
1	6	0	7.879419	-2.567097	-0.792300
2	6	0	8.868624	-2.118263	0.118824
3	6	0	10.091637	-2.780824	0.253916
4	6	0	10.319760	-3.906504	-0.537310
5	6	0	9.346322	-4.362418	-1.445678
6	6	0	8.128893	-3.702762	-1.579559
7	6	0	6.760345	-0.821126	0.013062
8	1	0	10.845315	-2.432799	0.953136
9	1	0	11.263104	-4.436938	-0.448989
10	1	0	9.549856	-5.241536	-2.049579
11	1	0	7.369704	-4.043988	-2.275730
12	7	0	6.718870	-1.817511	-0.821858
13	16	0	8.280089	-0.694772	0.951604
14	6	0	-1.174580	2.262122	1.348094
15	6	0	0.118399	2.775915	1.441954
16	6	0	1.130186	2.352379	0.565711
17	6	0	0.806461	1.353637	-0.372865
18	6	0	-0.479579	0.820544	-0.439822

S39

19	6	0	-1.507123	1.278304	0.403222
20	6	0	3.460402	0.925050	-0.447156
21	6	0	3.526903	1.982025	0.488840
22	6	0	4.686842	2.089621	1.274993
23	1	0	4.771656	2.877059	2.014042
24	6	0	5.742482	1.194724	1.121438
25	6	0	5.670867	0.142178	0.197158
26	6	0	4.500554	0.012399	-0.574077
27	1	0	-1.925129	2.606113	2.053023
28	1	0	0.338158	3.498623	2.219596
29	1	0	-0.690496	0.062900	-1.188304
30	1	0	6.622720	1.319607	1.745013
31	1	0	4.428177	-0.801727	-1.286630
32	7	0	2.446485	2.878957	0.607869
33	16	0	2.052118	0.831655	-1.537587
34	6	0	-4.407121	-1.135653	-0.093630
35	6	0	-5.523968	-0.308264	0.111718
36	6	0	-5.303196	1.045163	0.417426
37	1	0	-6.150891	1.703645	0.576121
38	6	0	-4.008755	1.551342	0.500889
39	6	0	-2.882593	0.731698	0.304643
40	6	0	-3.116223	-0.623903	0.010867
41	1	0	-3.872823	2.608082	0.711588
42	1	0	-2.274934	-1.296355	-0.129007
43	6	0	2.675359	4.212724	1.178144
44	6	0	3.633437	5.075438	0.339618

45	6	0	3.104788	5.381239	-1.065896
46	1	0	2.150628	5.919933	-1.022649
47	1	0	3.814390	6.003279	-1.620987U
48	1	0	2.943717	4.461819	-1.636842
49	1	0	4.615086	4.595224	0.268966
50	1	0	3.787422	6.010621	0.893946
51	1	0	3.024375	4.149716	2.220124
52	1	0	1.706996	4.715161	1.202297
53	7	0	-6.842964	-0.824065	0.011693
54	6	0	-7.963682	-2.997905	-0.192608
55	6	0	-7.149412	-2.111807	0.532723
56	6	0	-6.645080	-2.517136	1.780034
57	6	0	-6.943414	-3.784087	2.282529
58	6	0	-7.760713	-4.660703	1.562401
59	6	0	-8.271150	-4.256389	0.325156
60	1	0	-8.353689	-2.694972	-1.158808
61	1	0	-6.020163	-1.837044	2.349713
62	1	0	-6.544684	-4.080316	3.248705
63	1	0	-7.996210	-5.643414	1.959301
64	1	0	-8.902162	-4.928363	-0.249773
65	6	0	-9.875239	1.456523	-1.878494
66	6	0	-8.595524	1.381268	-2.436734
67	6	0	-7.596546	0.625618	-1.822146
68	6	0	-7.860185	-0.057443	-0.622941
69	6	0	-9.144672	0.026167	-0.060022
70	6	0	-10.142667	0.770553	-0.689804

S41

71	1	0	-10.652152	2.040408	-2.362477
72	1	0	-8.373769	1.902540	-3.363746
73	1	0	-6.608834	0.561501	-2.267040
74	1	0	-9.355537	-0.495289	0.868002
75	1	0	-11.130163	0.824222	-0.240095
76	1	0	-4.553263	-2.185590	-0.325003

Total Energy (HF) = -2503.6975827 Hartree

BT-PTZO-1:

Standard orientation

Center	Atomic Atomic		Atomic	Coordinates (Angstroms		
Number	Numb	er	Туре	X Y	Z	
1	6	0	7.371624	2.809143	-0.103889	
2	6	0	8.441712	2.139007	-0.748890	
3	6	0	9.653567	2.783188	-1.013135	
4	6	0	9.786235	4.115289	-0.622792	
5	6	0	8.731498	4.791941	0.018359	
6	6	0	7.525713	4.150673	0.281072	
7	6	0	6.368277	0.842964	-0.364405	
8	1	0	10.469869	2.265937	-1.507123	
9	1	0	10.718842	4.636154	-0.817618	
10	1	0	8.862949	5.829092	0.311288	
11	1	0	6.704223	4.659650	0.774353	
12	7	0	6.232818	2.051827	0.092183	

13	16	0	7.959610	0.493338	-1.103989
14	6	0	-1.471264	-2.714090	-1.011332
15	6	0	-0.181819	-3.229477	-0.936314
16	6	0	0.828287	-2.554579	-0.223462
17	6	0	0.456102	-1.343692	0.392385
18	6	0	-0.826096	-0.808283	0.286985
19	6	0	-1.828784	-1.489572	-0.413800
20	6	0	3.104444	-0.838684	0.418490
21	6	0	3.225661	-2.116510	-0.172748
22	6	0	4.457166	-2.409715	-0.794098
23	1	0	4.616357	-3.370645	-1.266827
24	6	0	5.471594	-1.462821	-0.847363
25	6	0	5.317280	-0.177774	-0.295407
26	6	0	4.106608	0.120435	0.346016
27	1	0	-2.220807	-3.279672	-1.556128
28	1	0	0.040075	-4.150245	-1.462405
29	1	0	-1.019866	0.155119	0.747408
30	1	0	6.394782	-1.729224	-1.353573
31	1	0	3.955349	1.094675	0.797871
32	7	0	2.157751	-3.023472	-0.178714
33	6	0	-8.339549	4.161249	-0.380303
34	6	0	-8.123768	2.905664	-0.954322
35	6	0	-7.368058	1.930064	-0.283310
36	6	0	-6.793387	2.269653	0.958067
37	6	0	-6.979518	3.538885	1.509309
38	6	0	-7.772367	4.483502	0.853060

39	6	0	-5.093555	0.256008	0.437466
40	6	0	-5.844577	0.102412	-0.745693
41	6	0	-5.242124	-0.575299	-1.817697
42	1	0	-5.773781	-0.691807	-2.754918
43	6	0	-3.955003	-1.098490	-1.703808
44	6	0	-3.202764	-0.943392	-0.528745
45	6	0	-3.794777	-0.238999	0.533846
46	1	0	-8.939473	4.892242	-0.914211
47	1	0	-8.540833	2.693525	-1.932203
48	1	0	-6.511115	3.777779	2.459418
49	1	0	-7.930462	5.461788	1.295832
50	1	0	-3.519141	-1.600242	-2.562421
51	1	0	-3.253553	-0.103773	1.465338
52	7	0	-7.152916	0.632758	-0.815154
53	16	0	-5.869900	1.027843	1.845460
54	6	0	-8.098077	0.085946	-1.795201
55	6	0	-8.433526	-1.395367	-1.553691
56	6	0	-9.134102	-1.649652	-0.214518
57	6	0	2.439285	-4.465406	-0.313923
58	6	0	3.271035	-5.034211	0.847553
59	6	0	2.567362	-4.942220	2.206322
60	1	0	1.613898	-5.484083	2.195306
61	1	0	3.190132	-5.383253	2.991168
62	1	0	2.362732	-3.904372	2.485237
63	1	0	4.242971	-4.531527	0.897898

65	1	0	2.918920	-4.673996	-1.279285
66	1	0	1.478488	-4.979114	-0.322936
67	1	0	-9.022099	0.658454	-1.695039
68	1	0	-7.743703	0.236655	-2.826881
69	1	0	-7.526549	-2.005741	-1.618449
70	1	0	-9.080138	-1.715088	-2.381525
71	1	0	-9.362360	-2.713290	-0.090333
72	1	0	-8.505863	-1.338345	0.625405
73	1	0	-10.078029	-1.095328	-0.149982
74	16	0	1.661479	-0.528760	1.413675
75	8	0	1.381821	0.915210	1.477385
76	8	0	1.799840	-1.292858	2.669427

Total Energy (HF) = -2937.9517787 Hartree

BT-PTZO-2:

Standard orientation

Center Number	Atoı Nu	nic At Imber	comic Type	Coordinato X Y	es (Angstroms) Z Z
1	6	0	7.702382	2.682725	0.660466
2	6	0	8.732142	2.219613	-0.197070
3	6	0	9.947306	2.900148	-0.313210
4	6	0	10.124785	4.058141	0.443150
5	6	0	9.110622	4.528353	1.298561
6	6	0	7.901376	3.851117	1.413568
7	6	0	6.646646	0.888855	-0.119207

8	1	0	10.732499	2.541551	-0.971079
9	1	0	11.060894	4.603332	0.369228
10	1	0	9.276468	5.432596	1.876146
11	1	0	7.110906	4.202015	2.068756
12	7	0	6.555178	1.912878	0.675390
13	16	0	8.200431	0.754865	-0.996050
14	6	0	-1.281620	-2.291568	-1.432201
15	6	0	0.000531	-2.813306	-1.562229
16	6	0	1.051575	-2.369581	-0.735529
17	6	0	0.725504	-1.378915	0.211475
18	6	0	-0.553596	-0.838376	0.325915
19	6	0	-1.596121	-1.289310	-0.492989
20	6	0	3.380350	-0.920649	0.275155
21	6	0	3.456852	-1.974932	-0.662708
22	6	0	4.659993	-2.086258	-1.389869
23	1	0	4.784033	-2.871966	-2.124226
24	6	0	5.688728	-1.171391	-1.209567
25	6	0	5.578305	-0.098605	-0.305599
26	6	0	4.397129	0.011232	0.441817
27	1	0	-2.050248	-2.639200	-2.115710
28	1	0	0.190083	-3.532088	-2.350549
29	1	0	-0.725899	-0.082325	1.084959
30	1	0	6.588080	-1.288022	-1.807073
31	1	0	4.280696	0.814779	1.160819
32	7	0	2.373868	-2.834817	-0.887625
33	6	0	2.627793	-4.179831	-1.438874
34	6	0	3.483153	-5.063233	-0.515748
35	6	0	2.819262	-5.359774	0.833812

36	1	0	1.858274	-5.870509	0.698072
37	1	0	3.457515	-6.010158	1.440428
38	1	0	2.637660	-4.443668	1.403657
39	1	0	4.463508	-4.602025	-0.353841
40	1	0	3.669637	-5.998767	-1.059792
41	1	0	3.077357	-4.105283	-2.437649
42	1	0	1.659436	-4.662509	-1.565624
43	16	0	1.981034	-0.900899	1.375244
44	8	0	1.729288	0.466523	1.860307
45	8	0	2.154794	-1.992380	2.354236
46	6	0	-2.965417	-0.732921	-0.381836
47	6	0	-3.181274	0.626093	-0.090623
48	6	0	-4.465622	1.150953	0.020985
49	1	0	-2.332240	1.289965	0.043404
50	6	0	-5.388494	-1.024602	-0.469299
51	6	0	-5.593080	0.333588	-0.170742
52	1	0	-4.598708	2.202959	0.250004
53	1	0	-6.243750	-1.675926	-0.615514
54	7	0	-6.903843	0.863080	-0.063966
55	6	0	-7.931088	0.102800	0.564216
56	6	0	-7.198102	2.159156	-0.573456
57	6	0	-9.212334	0.030246	-0.006682
58	6	0	-7.679710	-0.580795	1.765445
59	6	0	-6.702383	2.565227	-1.823732
60	6	0	-7.994249	3.049636	0.165856
61	6	0	-10.220364	-0.705350	0.617632
62	1	0	-9.413059	0.553888	-0.935742
63	6	0	-8.688566	-1.327728	2.374586

64	1	0	-6.694531	-0.523174	2.216922
65	6	0	-6.990708	3.838682	-2.315586
66	1	0	-6.092446	1.880753	-2.404367
67	6	0	-8.292090	4.314844	-0.341143
68	1	0	-8.377773	2.744986	1.134115
69	6	0	-9.965325	-1.392536	1.808292
70	1	0	-11.205837	-0.750653	0.162686
71	1	0	-8.477105	-1.849535	3.303631
72	6	0	-7.789763	4.720294	-1.581288
73	1	0	-6.598958	4.136154	-3.284204
74	1	0	-8.908981	4.990844	0.244194
75	1	0	-10.750074	-1.969144	2.288323
76	1	0	-8.017631	5.708133	-1.969780
77	6	0	-4.100219	-1.543467	-0.563592
78	1	0	-3.978149	-2.603043	-0.769129

Total Energy (HF) = -2654.0831653 Hartree

TDDFT calculation data of BT-PTZ-1, BT-PTZ-2, BT-PTZO-1 and BT-PTZO-2 BT-PTZ-1:

Excitation energies and oscillator strengths:

Excited State	1: Singlet-A	2.8344 eV 437.43 nm f=0.2332 <s**2>=0.000</s**2>
160 -> 162	-0.44791	
161 -> 162	0.49221	
161 -> 163	0.20311	

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -2787.00321690

Excited State	2: Singlet-A	2.9984 eV 413.50 nm f=0.0231 <s**2>=0.000</s**2>
160 -> 162	0.40767	
160 -> 163	0.17702	
161 -> 162	0.18845	
161 -> 163	0.48530	
161 -> 165	0.11892	
Excited State	3: Singlet-A	3.1210 eV 397.26 nm f=0.0264 <s**2>=0.000</s**2>
160 -> 162	-0.23386	
160 -> 163	-0.23099	
161 -> 162	-0.43188	
161 -> 163	0.43966	
Excited State	4: Singlet-A	3.2296 eV 383.90 nm f=0.0365 <s**2>=0.000</s**2>
160 -> 162	-0.25892	
160 -> 163	0.59572	
160 -> 164	0.11669	
161 -> 162	-0.17139	
161 -> 165	0.10975	
Excited State	5: Singlet-A	3.2832 eV 377.63 nm f=0.1440 <s**2>=0.000</s**2>
160 -> 164	-0.10244	
160 -> 165	0.16382	
161 -> 164	0.61675	
161 -> 165	0.23262	
Excited State	6: Singlet-A	3.4160 eV 362.96 nm f=0.0525 <s**2>=0.000</s**2>
160 -> 163	-0.19078	
160 -> 164	0.54944	
161 -> 165	0.35332	
Excited State	7: Singlet-A	3.6848 eV 336.48 nm f=0.0562 <s**2>=0.000</s**2>
160 -> 164	-0.33383	

161 -> 164	-0.28905	
161 -> 165	0.45933	
161 -> 166	-0.20453	
161 -> 168	0.13518	
Excited State	8: Singlet-A	3.7195 eV 333.33 nm f=0.0537 <s**2>=0.000</s**2>
160 -> 164	-0.12054	
160 -> 166	0.19754	
161 -> 165	0.15556	
161 -> 166	0.62891	
Excited State	9: Singlet-A	3.8412 eV 322.78 nm f=0.0462 <s**2>=0.000</s**2>
160 -> 164	0.16204	
160 -> 165	0.63024	
161 -> 164	-0.11484	
161 -> 165	-0.12751	
161 -> 168	0.13937	
Excited State	10: Singlet-A	4.0223 eV 308.24 nm f=0.0322 <s**2>=0.000</s**2>
160 -> 165	-0.16324	
160 -> 167	-0.14749	
160 -> 168	-0.27494	
161 -> 167	0.23559	
161 -> 168	0.51450	
161 -> 169	0.12266	
Excited State	11: Singlet-A	4.1065 eV 301.92 nm f=0.7478 <s**2>=0.000</s**2>
158 -> 162	0.33922	
159 -> 162	0.46897	
159 -> 163	0.10847	
160 -> 167	-0.20563	
161 -> 167	0.15838	

161 -> 168	-0.18313	
Excited State	12: Singlet-A	4.1421 eV 299.33 nm f=0.1756 <s**2>=0.000</s**2>
158 -> 162	-0.10144	
159 -> 162	-0.30892	
160 -> 167	-0.29500	
161 -> 167	0.45567	
161 -> 168	-0.25322	
161 -> 169	-0.11781	
Excited State	13: Singlet-A	4.1615 eV 297.93 nm f=0.0133 <s**2>=0.000</s**2>
159 -> 162	0.12211	
160 -> 168	0.53456	
161 -> 167	0.29730	
161 -> 168	0.12591	
161 -> 169	0.18903	
Excited State	14: Singlet-A	4.2091 eV 294.56 nm f=0.0714 <s**2>=0.000</s**2>
Excited State 156 -> 162	14: Singlet-A -0.21103	4.2091 eV 294.56 nm f=0.0714 <s**2>=0.000</s**2>
Excited State 156 -> 162 157 -> 162	14: Singlet-A -0.21103 0.12746	4.2091 eV 294.56 nm f=0.0714 <s**2>=0.000</s**2>
Excited State 156 -> 162 157 -> 162 158 -> 162	14: Singlet-A -0.21103 0.12746 0.52174	4.2091 eV 294.56 nm f=0.0714 <s**2>=0.000</s**2>
Excited State 156 -> 162 157 -> 162 158 -> 162 159 -> 162	14: Singlet-A -0.21103 0.12746 0.52174 -0.31768	4.2091 eV 294.56 nm f=0.0714 <s**2>=0.000</s**2>
Excited State 156 -> 162 157 -> 162 158 -> 162 159 -> 162 160 -> 168	14: Singlet-A -0.21103 0.12746 0.52174 -0.31768 0.10083	4.2091 eV 294.56 nm f=0.0714 <s**2>=0.000</s**2>
Excited State 156 -> 162 157 -> 162 158 -> 162 159 -> 162 160 -> 168 161 -> 169	14: Singlet-A -0.21103 0.12746 0.52174 -0.31768 0.10083 0.14290	4.2091 eV 294.56 nm f=0.0714 <s**2>=0.000</s**2>
Excited State 156 -> 162 157 -> 162 158 -> 162 159 -> 162 160 -> 168 161 -> 169 Excited State	 14: Singlet-A -0.21103 0.12746 0.52174 -0.31768 0.10083 0.14290 15: Singlet-A 	4.2091 eV 294.56 nm f=0.0714 <s**2>=0.000 4.2409 eV 292.36 nm f=0.0082 <s**2>=0.000</s**2></s**2>
Excited State 156 -> 162 157 -> 162 158 -> 162 159 -> 162 160 -> 168 161 -> 169 Excited State 158 -> 162	 14: Singlet-A -0.21103 0.12746 0.52174 -0.31768 0.10083 0.14290 15: Singlet-A -0.12476 	4.2091 eV 294.56 nm f=0.0714 <s**2>=0.000 4.2409 eV 292.36 nm f=0.0082 <s**2>=0.000</s**2></s**2>
Excited State 156 -> 162 157 -> 162 158 -> 162 159 -> 162 160 -> 168 161 -> 169 Excited State 158 -> 162 160 -> 166	 14: Singlet-A -0.21103 0.12746 0.52174 -0.31768 0.10083 0.14290 15: Singlet-A -0.12476 -0.35108 	4.2091 eV 294.56 nm f=0.0714 <s**2>=0.000 4.2409 eV 292.36 nm f=0.0082 <s**2>=0.000</s**2></s**2>
Excited State 156 -> 162 157 -> 162 158 -> 162 159 -> 162 160 -> 168 161 -> 169 Excited State 158 -> 162 160 -> 166 160 -> 167	 14: Singlet-A -0.21103 0.12746 0.52174 -0.31768 0.10083 0.14290 15: Singlet-A -0.12476 -0.35108 -0.11135 	4.2091 eV 294.56 nm f=0.0714 <s**2>=0.000 4.2409 eV 292.36 nm f=0.0082 <s**2>=0.000</s**2></s**2>
Excited State $156 \rightarrow 162$ $157 \rightarrow 162$ $158 \rightarrow 162$ $159 \rightarrow 162$ $160 \rightarrow 168$ $161 \rightarrow 169$ Excited State $158 \rightarrow 162$ $160 \rightarrow 166$ $160 \rightarrow 167$ $161 \rightarrow 166$	14: Singlet-A -0.21103 0.12746 0.52174 -0.31768 0.10083 0.14290 15: Singlet-A -0.12476 -0.35108 -0.11135 0.14530	4.2091 eV 294.56 nm f=0.0714 <s**2>=0.000 4.2409 eV 292.36 nm f=0.0082 <s**2>=0.000</s**2></s**2>
Excited State $156 \rightarrow 162$ $157 \rightarrow 162$ $158 \rightarrow 162$ $159 \rightarrow 162$ $160 \rightarrow 168$ $161 \rightarrow 169$ Excited State $158 \rightarrow 162$ $160 \rightarrow 166$ $160 \rightarrow 167$ $161 \rightarrow 166$ $161 \rightarrow 168$	 14: Singlet-A -0.21103 0.12746 0.52174 -0.31768 0.10083 0.10083 0.14290 15: Singlet-A -0.12476 -0.35108 -0.11135 0.14530 -0.17817 	4.2091 eV 294.56 nm f=0.0714 <s**2>=0.000 4.2409 eV 292.36 nm f=0.0082 <s**2>=0.000</s**2></s**2>

161 -> 170 0.12832

SavETr: write IOETrn= 770 NScale= 10 NData= 16 NLR=1 NState= 15 LETran= 280.

BT-PTZ-2:

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 2.7397 eV 452.54 nm f=0.5356 <S**2>=0.000

161 -> 163	-0.17877
162 -> 163	0.67065

162 -> 164 0.10012

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -2503.56752342

Excited State	2:	Singlet-A	3.2290 eV	383.98 nm	f=0.0105	<s**2>=0.000</s**2>
161 -> 163	0.	63460				
161 -> 164	0.	10802				
162 -> 163	0.2	20373				
162 -> 164	-0.	17514				
Excited State	3:	Singlet-A	3.3078 eV	374.83 nm	f=0.4870	<s**2>=0.000</s**2>
160 -> 163	0.	10722				
161 -> 163	0.	17699				
162 -> 164	0.	64961				
162 -> 165	0.	10609				
Excited State	4:	Singlet-A	3.4750 eV	356.79 nm	f=0.0101	<s**2>=0.000</s**2>
161 -> 165	0.	13766				
162 -> 165	0.	65438				
Excited State	5:	Singlet-A	3.6131 eV	343.16 nm	f=0.1064	<s**2>=0.000</s**2>
161 -> 164	0.4	49665				
161 -> 167	0.	14038				

162 -> 166	0.33504	
162 -> 167	-0.26998	
Excited State	6: Singlet-A	3.6874 eV 336.23 nm f=0.1455 <s**2>=0.000</s**2>
160 -> 163	0.13122	
161 -> 165	0.20550	
161 -> 166	0.15201	
162 -> 166	0.39373	
162 -> 167	0.31589	
162 -> 168	0.34975	
Excited State	7: Singlet-A	3.7199 eV 333.30 nm f=0.1526 <s**2>=0.000</s**2>
160 -> 163	-0.14693	
161 -> 164	-0.36900	
161 -> 165	-0.13885	
161 -> 166	0.14951	
162 -> 166	0.40637	
162 -> 168	-0.31943	
Excited State	8: Singlet-A	3.7918 eV 326.98 nm f=0.0624 <s**2>=0.000</s**2>
160 -> 163	0.10851	
161 -> 164	0.27310	
161 -> 165	-0.17895	
161 -> 167	-0.10046	
162 -> 167	0.44475	
162 -> 168	-0.36351	
Excited State	9: Singlet-A	3.8830 eV 319.30 nm f=0.7456 <s**2>=0.000</s**2>
160 -> 163	0.61571	
162 -> 167	-0.22999	
Excited State	10: Singlet-A	4.0107 eV 309.14 nm f=0.0222 <s**2>=0.000</s**2>
161 -> 165	0.56051	

161 -> 168	-0.19216	
162 -> 165	-0.11700	
162 -> 168	-0.31152	
Excited State	11: Singlet-A	4.1013 eV 302.30 nm f=0.0045 <s**2>=0.000</s**2>
158 -> 163	0.54543	
159 -> 163	0.14339	
160 -> 169	-0.10130	
161 -> 169	0.13115	
162 -> 169	-0.34823	
Excited State	12: Singlet-A	4.1376 eV 299.66 nm f=0.0082 <s**2>=0.000</s**2>
161 -> 170	-0.14196	
162 -> 169	-0.11196	
162 -> 170	0.64951	
Excited State	13: Singlet-A	4.1741 eV 297.03 nm f=0.0449 <s**2>=0.000</s**2>
159 -> 163	-0.12666	
161 -> 165	0.20982	
161 -> 166	0.21812	
161 -> 168	0.37286	
162 -> 165	-0.10732	
162 -> 171	0.19993	
162 -> 173	-0.13441	
162 -> 175	0.31142	
162 -> 176	-0.11787	
Excited State	14: Singlet-A	4.2029 eV 295.00 nm f=0.0225 <s**2>=0.000</s**2>
159 -> 163	0.39077	
161 -> 167	-0.20016	
162 -> 167	-0.14850	
162 -> 169	0.32572	

162 -> 170	0.10389	
162 -> 171	0.16321	
162 -> 173	-0.26236	
Excited State	15: Singlet-A	4.2178 eV 293.96 nm f=0.0446 <s**2>=0.000</s**2>
161 -> 166	0.51678	
162 -> 166	-0.15225	
162 -> 167	-0.12464	
162 -> 171	-0.27911	
162 -> 172	-0.22566	
162 -> 174	0.10556	

SavETr: write IOETrn= 770 NScale= 10 NData= 16 NLR=1 NState= 15 LETran= 280.

BT-PTZO-1:

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 3.0449 eV 407.18 nm f=0.1370 <S**2>=0.000 169 -> 170 0.68681 169 -> 171 0.11457

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -2937.79909426

Excited State	2: Singlet-A	3.0941 eV 400.71 nm f=0.0069 <s**2>=0.000</s**2>
169 -> 170	-0.12018	
169 -> 171	0.68682	
Excited State	3: Singlet-A	3.4786 eV 356.42 nm f=0.6204 <s**2>=0.000</s**2>
168 -> 170	0.43343	
169 -> 170	0.11108	
169 -> 172	0.51450	
Excited State	4: Singlet-A	3.5107 eV 353.17 nm f=0.1162 <s**2>=0.000</s**2>

168 -> 170	0.32759	
168 -> 171	0.49351	
169 -> 172	-0.33736	
Excited State	5: Singlet-A	3.5497 eV 349.28 nm f=0.1595 <s**2>=0.000</s**2>
168 -> 170	-0.41848	
168 -> 171	0.46629	
169 -> 172	0.25354	
Excited State	6: Singlet-A	3.8620 eV 321.04 nm f=0.0396 <s**2>=0.000</s**2>
167 -> 170	0.10437	
167 -> 172	-0.10173	
169 -> 173	-0.23182	
169 -> 174	0.59876	
169 -> 175	0.11922	
169 -> 177	-0.13796	
Excited State	7: Singlet-A	4.0107 eV 309.14 nm f=0.1108 <s**2>=0.000</s**2>
165 -> 170	0.16771	
167 -> 170	0.52355	
168 -> 172	0.12218	
168 -> 172 169 -> 173	0.12218 0.26564	
168 -> 172 169 -> 173 169 -> 175	0.12218 0.26564 0.17202	
168 -> 172 169 -> 173 169 -> 175 169 -> 177	0.12218 0.26564 0.17202 -0.20864	
168 -> 172 169 -> 173 169 -> 175 169 -> 177 Excited State	0.12218 0.26564 0.17202 -0.20864 8: Singlet-A	4.0263 eV 307.94 nm f=0.0335 <s**2>=0.000</s**2>
168 -> 172 169 -> 173 169 -> 175 169 -> 177 Excited State 165 -> 170	0.12218 0.26564 0.17202 -0.20864 8: Singlet-A -0.28054	4.0263 eV 307.94 nm f=0.0335 <s**2>=0.000</s**2>
168 -> 172 169 -> 173 169 -> 175 169 -> 177 Excited State 165 -> 170 167 -> 170	0.12218 0.26564 0.17202 -0.20864 8: Singlet-A -0.28054 -0.24467	4.0263 eV 307.94 nm f=0.0335 <s**2>=0.000</s**2>
168 -> 172 169 -> 173 169 -> 175 169 -> 177 Excited State 165 -> 170 167 -> 170 167 -> 171	0.12218 0.26564 0.17202 -0.20864 8: Singlet-A -0.28054 -0.24467 -0.28015	4.0263 eV 307.94 nm f=0.0335 <s**2>=0.000</s**2>
168 -> 172 169 -> 173 169 -> 175 169 -> 177 Excited State 165 -> 170 167 -> 170 167 -> 171 168 -> 173	0.12218 0.26564 0.17202 -0.20864 8: Singlet-A -0.28054 -0.24467 -0.28015 -0.15420	4.0263 eV 307.94 nm f=0.0335 <s**2>=0.000</s**2>
168 -> 172 169 -> 173 169 -> 175 169 -> 177 Excited State 165 -> 170 167 -> 170 167 -> 171 168 -> 173 169 -> 172	0.12218 0.26564 0.17202 -0.20864 8: Singlet-A -0.28054 -0.24467 -0.28015 -0.15420 -0.10549	4.0263 eV 307.94 nm f=0.0335 <s**2>=0.000</s**2>

169 -> 174	0.17424	
169 -> 175	0.10015	
Excited State	9: Singlet-A	4.0487 eV 306.23 nm f=0.0475 <s**2>=0.000</s**2>
167 -> 170	-0.22210	
167 -> 171	0.40986	
169 -> 174	-0.13912	
169 -> 175	0.26564	
169 -> 176	0.16375	
169 -> 177	-0.34553	
Excited State	10: Singlet-A	4.0668 eV 304.87 nm f=0.0165 <s**2>=0.000</s**2>
165 -> 170	0.18242	
167 -> 171	0.37962	
169 -> 173	0.40121	
169 -> 174	0.21139	
169 -> 175	-0.14955	
169 -> 176	-0.13239	
169 -> 177	0.20423	
Excited State	11: Singlet-A	4.0819 eV 303.74 nm f=0.0773 <s**2>=0.000</s**2>
165 -> 170	0.46191	
166 -> 170	-0.31216	
167 -> 170	-0.25455	
167 -> 171	-0.25180	
169 -> 177	-0.10938	
Excited State	12: Singlet-A	4.1947 eV 295.57 nm f=0.2347 <s**2>=0.000</s**2>
165 -> 170	0.13699	
166 -> 170	0.15160	
167 -> 170	-0.13784	
167 -> 172	0.11255	

168 -> 172	0.58316	
169 -> 173	-0.12894	
169 -> 178	0.11517	
169 -> 180	-0.10170	
Excited State	13: Singlet-A	4.2667 eV 290.59 nm f=0.1260 <s**2>=0.000</s**2>
164 -> 170	0.11362	
165 -> 170	0.27150	
166 -> 170	0.55974	
168 -> 172	-0.22703	
Excited State	14: Singlet-A	4.2894 eV 289.05 nm f=0.0359 <s**2>=0.000</s**2>
166 -> 171	0.13613	
167 -> 172	0.11672	
168 -> 172	-0.16222	
168 -> 173	0.14483	
169 -> 175	0.26182	
169 -> 177	0.16838	
169 -> 178	0.46355	
169 -> 180	-0.18467	
Excited State	15: Singlet-A	4.3162 eV 287.25 nm f=0.0210 <s**2>=0.000</s**2>
162 -> 170	-0.12372	
165 -> 171	0.26057	
166 -> 171	0.48472	
167 -> 171	-0.12329	
168 -> 173	0.21636	
169 -> 175	-0.13020	
169 -> 178	-0.18273	

SavETr: write IOETrn= 770 NScale= 10 NData= 16 NLR=1 NState= 15 LETran= 280.

BT-PTZO-2:

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 2.8772 eV 430.92 nm f=0.3916 <S**2>=0.000 170 -> 171 0.69357

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -2653.96254158

Excited State	2: Singlet-A	3.2175 eV 385.35 nm f=0.0372 <s**2>=0.000</s**2>
170 -> 172	0.68341	
170 -> 174	0.12749	
Excited State	3: Singlet-A	3.3459 eV 370.55 nm f=0.7139 <s**2>=0.000</s**2>
169 -> 171	-0.21104	
170 -> 171	0.11905	
170 -> 173	0.65354	
Excited State	4: Singlet-A	3.5384 eV 350.40 nm f=0.4770 <s**2>=0.000</s**2>
169 -> 171	0.65554	
170 -> 173	0.20904	
Excited State	5: Singlet-A	3.6144 eV 343.03 nm f=0.0161 <s**2>=0.000</s**2>
169 -> 172	-0.12690	
170 -> 174	0.59447	
170 -> 175	-0.30951	
Excited State	6: Singlet-A	3.8244 eV 324.19 nm f=0.0202 <s**2>=0.000</s**2>
169 -> 172	0.63364	
169 -> 173	0.11014	
170 -> 175	-0.20095	
Excited State	7: Singlet-A	3.8725 eV 320.17 nm f=0.1820 <s**2>=0.000</s**2>
170 -> 176	0.68748	
Excited State	8: Singlet-A	3.9280 eV 315.64 nm f=0.0149 <s**2>=0.000</s**2>

169 -> 172 0.16428	
169 -> 174 0.10287	
170 -> 174 0.31968	
170 -> 175 0.57639	
Excited State 9: Singlet-A	4.0462 eV 306.42 nm f=0.0070 <s**2>=0.000</s**2>
167 -> 171 0.67192	
169 -> 177 -0.11020	
Excited State 10: Singlet-A	4.1296 eV 300.24 nm f=0.0378 <s**2>=0.000</s**2>
168 -> 171 0.34700	
169 -> 173 0.59630	
Excited State 11: Singlet-A	4.2060 eV 294.78 nm f=0.2175 <s**2>=0.000</s**2>
168 -> 171 0.58980	
169 -> 173 -0.32417	
Excited State 12: Singlet-A	4.2766 eV 289.91 nm f=0.0029 <s**2>=0.000</s**2>
170 -> 178 0.25874	
170 -> 180 -0.23348	
170 -> 181 0.57222	
170 -> 182 0.11827	
Excited State 13: Singlet-A	4.3090 eV 287.73 nm f=0.0098 <s**2>=0.000</s**2>
170 -> 178 0.54357	
170 -> 180 -0.12042	
170 -> 181 -0.32761	
170 -> 182 0.17220	
170 -> 184 -0.15846	
Excited State 14: Singlet-A	4.3269 eV 286.54 nm f=0.0251 <s**2>=0.000</s**2>
169 -> 174 -0.26044	
169 -> 175 -0.13732	
170 -> 178 0.13853	

170 -> 183	0.45783		
170 -> 184	0.33211		
Excited State	15: Singlet-A	4.3882 eV 282.54 nm f=0.0030 <s**2>=0.000</s**2>	
160 -> 171	-0.13836		
168 -> 172	0.23289		
169 -> 174	0.47272		
169 -> 175	0.14410		
170 -> 175	-0.12810		
170 -> 177	-0.20176		
170 -> 183	0.18177		
170 -> 184	0.16528		
SavETr: write	IOETrn= 770 NS	Scale= 10 NData= 16 NLR=1 NState= 15 LETran=	280.