From window panes to bone regeneration: Structural, viscosity and

bioactivity of soda lime silicate glasses

Zhaorui Jin,^a Daniel R. Neuville,^{*b} Coraline Chartier,^a Pavel Kachanov,^a Scott Kroeker,^c Stéphane Gin,^d Jincheng Du,^{*e} Delia S. Brauer^{*a}

Supplementary Information

- ^a Otto Schott Institute of Materials Research, Friedrich Schiller University, Lessingstr. 12 (AWZ), 07743 Jena, Germany
- ^b Geomat Lab, Institut de Physique du Globe de Paris, CNRS-UPC, 1 rue Jussieu, 75005 Paris, France
- ^c Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- ^d Commissariat à l'énergie atomique et aux énergies alternatives, DES, ISEC, DPME, SEME, University of Montpellier, Marcoule, F-30207 Bagnols-sur-Cèze, France
- ^e Department of Materials Science and Engineering, University of North Texas, Denton, TX 76207, USA

*Corresponding authors: Delia S. Brauer: delia.brauer@uni-jena.de, Daniel R. Neuville: neuville@ipgp.fr, Jincheng Du: jincheng.du@unt.edu.

Figure S1: Diffusivity calculated from the viscosity data of the glasses in this study together with that of glasses of the nominal molar composition 50 SiO₂-50 CaO (NC50.00), 60 SiO₂-40 CaO (NC60.00) and 60 SiO₂-40 Na₂O (NC60.40).¹ Results are compared with literature values for diffusivity of sodium ions in glass of albite or orthoclase composition,² diffusivity of calcium ions in glass of albite or jadeite composition³ and diffusivity of oxygen in diopside glass.⁴

Table S1: Parameters obtained from the fitting of the low-temperature viscosity data by the Voge	<u>+</u> -
Fulcher-Tammann equation.	

Glass		Α	В	T_1	
		J/mol	J/mol K	К	
	Si70	-10.934	10870	364.96	•
	Si65	-9.1157	8617.2	422.76	
	Si60	-3.9871	4180.3	554.39	
	Si55	0.94997	1776.2	639.31	
	Si50	0.84529	1672.5	638.31	

Table S2: Parameters obtained from the fitting of viscosity data by the Adam-Gibbs equation: temperature of viscosity 10^{12} Pa s ($T_g(\eta)$), heat capacity of the glass at the onset of T_g (C_p^g (T_g)), heat capacity of the liquid (C_p^{-1}), configurational heat capacity (C_p^{conf})

Glass	Τ_ε(η) °C (K)	C_p^g (T_g) J/mol K	C p ^I J/mol K	C_p^{conf} (T_g) J/mol K	A e J/mol	B e J/mol K	S ^{conf} (T _g) J/mol
Si70	566 (838.9)	69.86	85.89	16.03	-2.31	98661	8.22
Si65	558 (830.9)	69.97	86.64	16.67	-2.45	97766	8.17
Si60	543 (815.9)	69.94	87.39	17.45	-2.21	80559	6.93
Si55	527 (800.1)	69.87	88.14	18.27	-2.27	79577	6.96
Si50	515 (788.2)	69.89	88.90	19.01	-2.43	77925	6.84

References

- 1. D. R. Neuville, *Chem Geol*, 2006, **229**, 28-41.
- 2. A. Jambon and J. P. Carron, *Geochim Cosmochim Ac*, 1976, **40**, 897-903.
- 3. K. Roselieb and A. Jambon, *Geochim Cosmochim Ac*, 2002, **66**, 109-123.
- 4. K. W. Semkow and L. A. Haskin, *Geochim Cosmochim Ac*, 1985, **49**, 1897-1908.