Supplementary Information (SI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Towards cell-adhesive, 4D printable PCL Networks through dynamic covalent chemistry

Sagnik Ghosh^a, Sathiyaraj Subramaniyan^b, Anadi Bisht^{c,d}, Bhanu Nandan^a, Ritu

Kulshreshtha^d, Minna Hakkarainen^b, Rajiv K. Srivastava^{a,*}

^a Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz

Khas, New Delhi-110016, India

^b KTH Royal Institute of Technology, Department of Fibre and Polymer Technology,

Teknikringen 58, 100 44, Stockholm, Sweden

^c School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas,

New Delhi-110016, India

^d Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology

Delhi, Hauz Khas, New Delhi-110016, India

* Corresponding author - <u>rajiv@iitd.ac.in</u>

Figure S1: ¹H NMR of polycaprolactone diol and PCLDMA

Figure S2: ¹³C NMR of polycaprolactone diol and PCLDMA

Figure S3: ¹H NMR of methacrylated vanillin

Figure S4: ¹³C NMR of methacrylated vanillin

Figure S5: ¹H NMR of imination of methacrylated vanillin

Figure S6: ¹³C NMR of imination of methacrylated vanillin

Figure S7: TGA thermogram of prepared scaffolds

Sample	DMA T _g	T ₅	T _d	Residue at 600°C	G ₃₇ (Mpa)	ϑ_e (mol/m ³)
X-P ₁ SB ₁	-22±3	274±5	406±6	3.0±1.1	7.9 ± 1.8	2.43±0.02
X-P ₁ SB ₃	17.5±2	271±2	409±3	14.4±0.6	21.9 ± 3.1	3.21±0.1

Table S1: Thermal properties of X-P₁SB₁ and X-P₁SB₃

Figure S8: Mechanism of self-healing through imine metathesis for X-P₁SB₃ scaffolds.

Figure S9: Surface morphology of pristine PCL scaffold.

Figure S10: (a) Degradation profile of X-P₁SB₃ under various pH levels, (b) mass spectra of X-P₁SB₃ after hydrolytic degradation for 120 days at 37 °C.

Table S2: Peaks assignment for different m/z showing linear water-soluble degradation

products

m/z	Degraded product
11.108	-
60.434	-
86.425	Methacrylic acid
155.143	6-hydroxy caproic acid + Na
256.728	-
306.852	Oligomer of Vanillin
440.295	Jefm
474.623	H-CL ₄ -OH
701.955	H-CL ₆ -OH
723.877	H-CL ₆ -OH+Na
816.420	H-CL ₇ -OH
930.450	H-CL ₈ -OH
985.345	-
1619.672	H-CL ₁₄ -OH
1620.502	H-CL ₁₄ -OH
1729.814	H-CL ₁₅ -OH

Demonstration of Shape memory effect for X-P₁SB₃: Video VS1 and VS2

