Multi-Organelle Imaging with Dye Combinations: Targeting the ER,

Mitochondria, and Plasma Membrane

Yogesh Dubey and Sriram Kanvah*

^aDepartment of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar

e-mail: sriram@iitgn.ac.in

Table of Contents

Figure S1	Reported fluorophores for Multi-organelle imaging
S2	Synthetic Procedure
Figure S3	Absorption spectral data for C1, C2, D1, P1 and P2
Figure S4	Emission spectral data for C1, C2, D1, P1 and P2
Table S1	Molar extinction coefficient for C1, C2, D1, P1 and P2
Table S2	Quantum yield for C1, C2, P1 and P2
Figure S5	Spectral overlap between C1/C2 emission and the P2 excitation
Figure S6	Lifetime Decay for C1, C2 and C1+P2
Figure S7	MTT Assay for C1, C2, D1, P1 and P2
Figure S8	Preliminary Imaging for C2, D1 and P2 in COS-7
Figure S9	Preliminary Imaging for C1, C2 and D1 in HeLa
Figure S10	Preliminary Imaging for C1, C2 and P2 in A549
Figure S11	Colocalization for C2, D1 and P2 in COS-7
Figure S12	Colocalization for C1, C2 and D1 in HeLa
Figure S13	Colocalization for C1 and C2 in A549
Figure S14	Visualization of rough and smooth endoplasmic reticulum using C1, C2, and D1
Figure S15	Compatibility with trypsinization C1, C2, D1, P1 and P2 in HeLa
Figure S16	Standardized condition for multi-organelle imaging (HeLa and A549)
Figure S17	No Spectral Spillover experiment (A549)
Figure S18	Triple Imaging using C1/C2 and P2 in HeLa
Figure S19	Dual Imaging using C2 and P2 in A549
Figure S20	3D Projection
Figure S21	Response to pH
Figure S22	Response to different analyte
S23	Characterization Data
	References

Figure S1. A few examples of reported fluorophores for multi-organelle imaging

S2. Synthetic procedures

A. Diethylmalonate, piperidine, NaOH, HCl B. 4-(2-Aminoethyl)benzenesulfonamide, HATU, EDC.HCl, DMAP, Et₃N, DMF C. 4-(2-Aminoethyl)benzenesulfonamide, HATU, EDC.HCl, DMAP, Et₃N, DMF D. 4-(2-Aminoethyl)benzenesulfonamide, Et₃N, DCM E. 4-Picoline, KOH F. 8bromoctanoic acid, EtOH G. 4-(2-Aminoethyl)benzenesulfonamide, HATU, EDC.HCl, DMAP, Et₃N, DMF

7-(diethylamino)-2-oxo-2H-chromene-3-carboxylic acid (Route A)¹

In a round bottom flask equipped with magnetic bead, 4-(Diethylamino)-2-hydroxybenzaldehyde (1 equiv) was dissolved in ethanol (0.1 M), followed by the addition of diethyl malonate (1 equiv) and piperidine (2 equiv). The reaction mixture was refluxed for 16 h, then quenched with 3N HCl and extracted with brine and dichloromethane. The organic layer was dried over anhydrous sodium sulfate and concentrated using rotary evaporator. The resulting crude product was dissolved in ethanol (0.1 M), and 12N NaOH was added dropwise. The reaction was refluxed for 24 h and subsequently quenched with 12N HCl on ice. The resulting orange precipitate was filtered, washed with water, and purified by silica gel column chromatography using 60% ethyl acetate in hexanes, yielding the pure product as a yellow solid in 75% yield.

7-(diethylamino)-2-oxo-N-(4-sulfamoylphenethyl)-2H-chromene-3-carboxamide (C1) (Route B)

In a round-bottom flask equipped with a magnetic stir bar, Cou-COOH (1 equiv), 4-(2-aminoethyl)benzenesulfonamide (1 equiv), HATU (1.1 equiv), EDC·HCl (1.1 equiv), and DMAP (1 equiv) were added and purged with argon gas to ensure an inert atmosphere. Under this atmosphere, dry DMF (0.1 M) was added to dissolve the reagents, followed by the addition of triethylamine (2 equiv) at 0 °C. The reaction mixture was stirred at room temperature for 24 h. Completion of the reaction was confirmed by TLC using 1% MeOH in methylene chloride (DCM). The crude product was concentrated using rotary evaporator and purified by silica gel column chromatography with a gradient elution from 1% to 10% methanol in methylene chloride, yielding the pure product as a bright yellow solid in 45% yield.

7-(diethylamino)-N-(4-(N-(6-(diethylamino)-2-oxo-2H-chromene-3carbonyl)sulfamoyl)phenethyl)-2-oxo-2H-chromene-3-carboxamide (C2) (Route C)

Following the general procedure from Samantha et. al with slight modifications.² In a roundbottom flask equipped with a magnetic stir bar, 4-(2-aminoethyl)benzenesulfonamide (1 equiv), Cou-COOH (2.2 equiv), HATU (1.5 equiv), EDC·HCl (1.5 equiv), and DMAP (1 equiv) were added and purged with argon gas to ensure an inert atmosphere. Under this atmosphere, dry DMF (0.1 M) was added to dissolve the reagents, followed by the addition of triethylamine (5 equiv) at 0 °C. The reaction mixture was stirred at room temperature for 24 h. The completion of the reaction was confirmed by TLC using 2% MeOH in DCM. The crude product was concentrated using rotary evaporator and purified by silica gel column chromatography with a gradient elution from 1% to 10% methanol in DCM, yielding the pure product as a bright yellow solid in 41% yield.

5-(dimethylamino)-N-(4-sulfamoylphenethyl)naphthalene-1-sulfonamide (D1) (Route D)

In a round-bottom flask equipped with a magnetic stir bar, 4-(2-aminoethyl)benzenesulfonamide (1 equiv) and triethylamine (4 equiv) were dissolved in DCM and stirred for 20 minutes. To this solution, 5-(dimethylamino)naphthalene-1-sulfonyl chloride (2 equiv) was added, and the reaction was stirred at room temperature for 12 hours, with progress monitored by TLC. The reaction was allowed to proceed until the starting material was fully consumed. The crude reaction mixture was then concentrated using rotary evaporation and purified by silica gel column chromatography with isocratic elution using 1% methanol in DCM, yielding the pure product as a colorless solid in 91% yield.

(E)-N,N-dimethyl-4-(2-(pyridin-4-yl)vinyl)aniline (NPy) (Route E)³

In a round-bottom flask equipped with a magnetic stir bar, 4-(dimethylamino)benzaldehyde (1 equiv), 4-picoline (5 equiv), and potassium hydroxide (5 equiv) were heated at 80 °C for 12 h. After the reaction mixture cooled to room temperature, ice-cold water was added. The resulting orange precipitate was filtered, washed with water, and yielded the product with a 22% yield.

(E)-1-(7-carboxyheptyl)-4-(4-(dimethylamino)styryl)pyridin-1-ium bromide (P1) (Route F)

In a round-bottom flask equipped with a magnetic stir bar, NPy (1 equiv) and 8-bromooctanoic acid (1.2 equiv) were dissolved in ethanol (0.1 M) and refluxed for 24 hours. The reaction mixture was then completely dried using a rotary evaporator. A minimal amount of dichloromethane (DCM) was added, followed by sonication. The resulting red precipitate was filtered, washed with water, and yielded the product with a 51% yield.

4-((E)-4-(dimethylamino)styryl)-1-(8-((4-(2-(8-(4-((E)-4-(dimethylamino)styryl)pyridin-1ium-1-yl)octanamido)ethyl)phenyl)sulfonamido)-8-oxooctyl)pyridin-1-ium bromide (P2) (Route G)

Following the general procedure from Samantha et. al with slight modifications.² In a roundbottom flask equipped with a magnetic stir bar, 4-(2-aminoethyl)benzenesulfonamide (1 equiv), 8C-COOH (2.2 equiv), HATU (1.5 equiv), EDC·HCl (1.5 equiv), and DMAP (1 equiv) were added and purged with argon gas to ensure an inert atmosphere. Under this atmosphere, dry DMF (0.1 M) was added to dissolve the reagents, followed by the addition of triethylamine (5 equiv) at 0 °C. The reaction mixture was stirred at room temperature for 24 hours. Completion of the reaction was confirmed by TLC using 2% MeOH in DCM. The crude product was concentrated using rotary evaporation and purified by silica gel column chromatography with a gradient elution from 1% to 12% methanol in DCM, yielding the pure product as a red solid in 41% yield.

Figure S3. Absorption spectral data for C1, C2, D1, P1 and P2 in different solvents at concentration of 20 μ M

Figure S4. Emission spectral data for C1, C2, D1, P1 and P2 in different solvents at concentration of 20 μ M

Solvent	C1	C2	D1	P1	P2
	3	3	3	3	3
Dioxane	10.2	13.3	2.2	14.1	24.8
THF	10.2	14.6	1.5	13.7	15.4
EtOH	11.9	15.5	1.4	14.6	16.3
CH ₃ OH	12.6	14.9	1.4	14.3	16.5
CH ₃ CN	11.2	15.4	0.9	13.9	15.1
DMF	10.7	13.9	1.2	12.9	13.4
DMSO	10.3	13.8	1.4	12.7	13.3
H ₂ O	6.4	14.4	0.6	10.3	9.5

Table S1. Molar extinction coefficient [ϵ (M⁻¹cm⁻¹) × 10³] for C1, C2, D1, P1 and P2 in different solvents

Table S2. Relative quantum yield for C1, C2, P1 and P2 with reference to quinine sulfate

Molecule	Φ (MeOH) %
	yield
C1	1.24
C2	1.21
P1	0.51
P2	0.58

Figure S5. Normalized spectral overlap between C1/C2-emission and the P2-excitation

Figure S6. Lifetime decay profiles for C1 (A) and C2 (B) in various solvents

Tabulated lifetime decay data for C1 and C2

Compound	Solvent	τ ₁ (ns)	τ ₂ (ns)	τ ₃ (ns)	χ2
	Dioxane	1.86	-	-	1.051
	THF	2.30	-	-	1.038
	EtOH	0.28	0.66	-	0.979
C1	MeOH	0.14	0.73	-	1.028
	ACN	0.31	-	-	1.020
	DMF	0.32	-	-	1.111
	DMSO	0.34	1.74	-	0.948
	Water	0.10	1.83	11.56	1.245
	Dioxane	1.89	-	-	0.991
	THF	2.35	-	-	1.056
	EtOH	0.29	1.12	-	1.237
C2	MeOH	0.14	1.22	-	1.181
	ACN	0.32	1.12	-	1.007
	DMF	0.32	-	-	1.287
	DMSO	0.31	1.21		0.991
	Water	0.08	1.52	8.24	1.015

Lifetime decay profiles for C1 (left panel) and C1+P2 (right panel) in DMSO:

Figure S7. MTT Assay for C1, C2, D1, P1 and P2 in COS-7, HeLa and A549 cell lines at bioimaging concentration of 1 μ M

Figure S8. Preliminary Imaging for C2, D1 and P2 in COS-7. Scale bar: 10 µm

Figure S9. Preliminary Imaging for C1, C2 and D1 in HeLa Cells. Scale bar: $10 \ \mu m$

Synthesized Probe	Bright Field	Overlay
C1		
C2	A State of S	Contraction of the second seco
P2		
P2		

Figure S10. Preliminary Imaging for C1, C2 and P2 (P2^{*} - At saturation of mitochondrial fluorescence) in A549. Scale bar: 10 μ m

Figure S11. Colocalization for C2, D1 and P2 in COS-7 cells. Scale bar: 10 μm

Figure S12. Colocalization for C1, C2 and D1 in HeLa cells. Scale bar: 10 μm

Figure S13. Colocalization for C1 and C2 in A549 cells. Scale bar: 10 μm

Figure S14. Visualization of rough and smooth endoplasmic reticulum using C1, C2, and D1 in COS-7. Scale bar: $10 \ \mu m$

Figure S15. Compatibility with trypsinization C1, C2, D1, P1 and P2 in HeLa Cells. Scale bar: $10 \ \mu m$

Synthesized Probe	Bright Field	Synthesized Probe	Bright Field	Synthesized Probe	Bright Field
5		S	(M		
			0		190
C1	Synthesized Probe	C2 Bright Field	Synthesized Probe	Bright Field	
	P1 =		P2		

Figure S16. Standardized condition for multi-organelle imaging (HeLa cells-upper panel and A549 cells-lower panel)

Figure S17. No Spillover experiment with (A549 cells) Scale bar: 10 μ m

Figure S18. Triple Imaging using C1/C2 and P2 in HeLa cells. Scale bar: 10 μ m

Figure S19. Dual Imaging using C2 and P2 in A549 cells. Scale bar: $10 \ \mu m$

Figure S20. 3D Projection (Upper panel – HeLa and Lower panel – A549)

S23 . Characterization Data

7-(diethylamino)-2-oxo-2H-chromene-3-carboxylic acid

¹**H NMR** (500 MHz, DMSO-d6): δ (ppm) 12.52 (s, 1H), 8.60 (s, 1H), 7.65 (d, J = 10.0 Hz, 1H), 6.82-6.79 (dd, $J_1 = 5.0$ Hz, $J_2 = 5.0$ Hz, 1H), 6.58 (s, 1H), 6.49 (q, J = 5.0 Hz, 4H), 1.14 (t, J = 5.0 Hz, 6H). ¹³**C NMR** (126 MHz; DMSO-d6) δ (ppm) 164.98, 159.96, 158.38, 153.38, 149.94, 132.33, 110.53, 107.84, 107.63, 96.39, 44.86, 12.79. **HRMS** (ESI) m/z: calculated for C₁₄H₁₅NO₄Na⁺ [M+Na]⁺: 284.0893; Found: 284.0901

7-(diethylamino)-2-oxo-N-(4-sulfamoylphenethyl)-2H-chromene-3-carboxamide (C1)

¹**H NMR** (500 MHz, DMSO-d6): δ (ppm) 8.73 (t, J = 5.0 Hz, 1H), 8.65 (s, 1H), 7.76 (d, J = 10.0 Hz, 2H), 7.68 (d, J = 10.0 Hz, 1H), 7.45 (d, J = 10.0 Hz, 2H), 7.31 (s, 2H), 6.80 (dd, 1H), 6.60 (d, J = 5.0 Hz, 1H), 3.58 (q, J = 5.0 Hz, 2H), 3.48 (q, J = 5.0 Hz, 4H), 2.92 (t, J = 5.0 Hz, 2H), 1.14 (t, J = 5.0 Hz, 6H). ¹³**C NMR** (126 MHz; DMSO-d6) δ (ppm) 162.66, 162.17, 157.69, 152.91, 148.21, 144.06, 142.59, 132.07, 129.60, 126.22, 110.61, 109.69, 108.12, 96.30, 44.80, 35.38, 12.78. **HRMS** (ESI) m/z: calculated for C₂₂H₂₆N₃O₅S⁺ [M+H]⁺: 444.1588; Found: 444.1595

7-(diethylamino)-N-(4-(N-(6-(diethylamino)-2-oxo-2H-chromene-3carbonyl)sulfamoyl)phenethyl)-2-oxo-2H-chromene-3-carboxamide (C2)

¹**H NMR** (500 MHz, DMSO-d6): δ (ppm) 8.73 (t, J = 5.0 Hz, 1H), 8.66 (s, 1H), 7.76 (d, J = 10.0 Hz, 2H), 7.68 (d, J = 10.0 Hz, 1H), 7.52 (s, 4H), 7.45 (d, J = 10.0 Hz, 2H), 7.32 (s, 2H), 6.80 (dd, 1H), 6.60 (s, 1H), 4.47 (s, 1H), 3.58 (q, J = 5.0 Hz, 2H), 3.48 (q, $J_I = 5.0$ Hz, $J_2 = 10.0$ Hz, 4H), 3.16 (q, J = 5.0 Hz, 4H), 2.92 (t, J = 5.0 Hz, 2H), 1.31 (t, J = 5.0 Hz, 6H), 1.14 (t, J = 5.0 Hz, 6H). ¹³**C NMR** (126 MHz; DMSO-d6) δ (ppm) 162.67, 162.17, 157.69, 152.92, 148.20, 144.07, 142.59, 133.00, 132.07, 130.72, 129.60, 129.54, 128.29, 126.22, 110.61, 109.69, 108.12, 96.30, 59.90, 55.38, 52.44, 44.80, 35.38, 12.77, 7.94. **HRMS** (ESI) m/z: calculated for C₃₆H₃₉N₄O₈S⁺ [M+H]⁺: 685.2332; Found: 685.2029

5-(dimethylamino)-N-(4-sulfamoylphenethyl)naphthalene-1-sulfonamide (D1)

¹**H NMR** (500 MHz, CDCl₃): δ (ppm) 8.46 (d, J = 10.0 Hz, 1H), 8.27 (d, J = 10.0 Hz, 1H), 8.09 (dd, 1H), 8.05 (t, J = 5.0 Hz, 1H), 7.66 (d, J = 10.0 Hz, 2H), 7.63-7.56 (m, 2H), 7.27 (t, J = 5.0 Hz, 5H), 3.05 (q, J = 5.0 Hz, 2H), 2.83 (s, 6H), 2.71 (t, J = 5.0 Hz, 2H). ¹³C **NMR** (126 MHz;

CDCl₃) δ (ppm) 151.81, 143.32, 142.58, 136.40, 129.90, 129.59, 129.53, 128.71, 128.31, 126.04, 124.07, 119.60, 115.64, 45.54, 43.94, 35.55. **HRMS** (ESI) m/z: calculated for C₂₀H₂₄N₃O₄S₂⁺ [M+H]⁺: 434.1203; Found: 434.1209

(E)-N,N-dimethyl-4-(2-(pyridin-4-yl)vinyl)aniline (NPy)

¹**H NMR** (500 MHz, CDCl₃): δ (ppm) 8.51 (d, J = 5.0 Hz, 2H), 7.44 (d, J = 10.0 Hz, 2H), 7.32 (d, J = 5.0 Hz, 2H), 7.22 (s, 1H), 6.79 (d, J = 15.0 Hz, 1H), 6.71 (d, J = 10.0 Hz, 2H), 3.01 (s, 6H). ¹³**C NMR** (126 MHz; CDCl₃) δ (ppm) 150.78, 150.01, 145.57, 133.35, 128.32, 124.26, 121.17, 120.40, 112.19, 40.32. **HRMS** (ESI) m/z: calculated for C₁₅H₁₇N₂⁺ [M+H]⁺: 225.1386; Found: 225.1379

(E)-1-(7-carboxyheptyl)-4-(4-(dimethylamino)styryl)pyridin-1-ium bromide (P1)

¹**H NMR** (500 MHz, DMSO-d6): δ (ppm) 12.00 (s, 1H), 8.80 (d, J = 10.0 Hz, 2H), 8.08 (d, J = 5.0 Hz, 2H), 7.94 (d, J = 15.0 Hz, 1H), 7.61 (d, J = 5.0 Hz, 2H), 7.19 (d, J = 15.0 Hz, 1H), 6.79 (d, J = 10.0 Hz, 2H), 4.42 (t, J = 5.0 Hz, 2H), 3.03 (s, 6H), 2.19 (t, J = 5.0 Hz, 2H), 1.87 (t, J = 5.0 Hz, 2H), 1.48 (t, J = 5.0 Hz, 2H), 1.28 (t, J = 5.0 Hz, 6H). ¹³C NMR (126 MHz; DMSO-d6) δ (ppm) 174.92, 154.20, 152.40, 143.96, 142.65, 130.66, 122.97, 122.88, 117.61, 112.43, 59.55, 34.05, 30.91, 28.75, 28.55, 25.76, 24.80. HRMS (ESI) m/z: calculated for C₂₃H₃₁N₂O₂⁺ [M]⁺: 367.2380; Found: 367.2390

4-((E)-4-(dimethylamino)styryl)-1-(8-((4-(2-(8-(4-((E)-4-(dimethylamino)styryl)pyridin-1ium-1-yl)octanamido)ethyl)phenyl)sulfonamido)-8-oxooctyl)pyridin-1-ium bromide (P2)

¹**H NMR** (500 MHz, DMSO-d6): δ (ppm) 8.79 (d, J = 10.0 Hz, 2H), 8.05 (d, J = 10.0 Hz, 2H), 7.95-7.90 (m, 2H), 7.74 (d, J = 10.0 Hz, 1H), 7.66 (d, J = 10.0 Hz, 1H), 7.60 (d, J = 10.0 Hz, 2H), 7.53 (s, 4H), 7.38 (d, J = 10.0 Hz, 1H), 7.34 (s, 1H), 7.30 (d, J = 10.0 Hz, 1H), 7.18 (d, J = 15.0 Hz, 1H), 6.79 (d, J = 10.0 Hz, 2H), 4.48 (s, 1H), 4.42 (d, J = 5.0 Hz, 2H), 3.29 (d, J = 5.0 Hz, 2H), 3.16 (q, $J_1 = 5.0$ Hz, $J_2 = 10.0$ Hz, 4H), 3.02 (s, 6H), 2.83 (s, 6H), 2.79-2.75 (m, 1H), 2.02 (q, J = 5.0 Hz, 2H), 1.87 (d, J = 10.0 Hz, 2H), 1.44 (d, J = 5.0 Hz, 2H), 1.32-1.18 (m, 19H). ¹³**C NMR** (126 MHz; DMSO-d6) δ (ppm) 172.54, 172.48, 161.54, 154.20, 152.40, 144.25, 143.93, 142.65, 142.47, 133.01, 130.71, 130.66, 129.56, 129.53, 129.24, 128.31, 126.10, 125.57, 122.96, 122.87, 117.59, 112.43, 59.93, 59.59, 52.46, 35.76, 30.93, 28.61, 25.78, 25.56, 7.94. **HRMS** (ESI) m/z: calculated for C₅₄H₇₀Br₂N₆O₄S⁺ [M]⁺: 1056.3546; Found: 1056.2958

References

- Nelson, Grady L., Conor T. Ronayne, Lucas N. Solano, Sravan K. Jonnalagadda, Shirisha Jonnalagadda, Tanner J. Schumacher, Zachary S. Gardner et al, *Bioorganic & Medicinal Chemistry Letters*, 2021, 52, 128411.
- 2. James, Samantha N., and Mark J. Coster, Tetrahedron Letters, 2015, 56, 2059-2061.
- **3.** Mukherjee, Tarushyam, M. Aravintha Siva, Komal Bajaj, Virupakshi Soppina, and Sriram Kanvah, *Journal of Photochemistry and Photobiology B: Biology*, 2020, **203**, 111732.