## **Supporting information**

Decomposable STING nanoagonist-amplified oncolytic virotherapy through remodeling the immunosuppressive microenvironment of triple-negative breast cancer

Min Mu<sup>1,†</sup>, Guoqing Wang<sup>2,†</sup>, Bo Chen<sup>1</sup>, Hui Li<sup>1</sup>, Chenqian Feng<sup>1</sup>, Rangrang Fan<sup>3</sup>, Nianyong Chen<sup>1</sup>, Bo Han<sup>4</sup>, Aiping Tong<sup>1,\*</sup>, Bingwen Zou<sup>1,\*</sup>, Gang Guo<sup>1,\*</sup>

<sup>1</sup> Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Department of Radiation Oncology and Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China

<sup>2</sup> Department of Ophthalmology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China

<sup>3</sup> Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China

<sup>4</sup> Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832002, China

<sup>†</sup> These authors contributed equally to this work.

\* Corresponding author:

E-mail address: guogang@scu.edu.cn (G. Guo) ; zoubingwen81@163.com (B. Zou); aipingtong@scu.edu.cn (A. Tong).



Fig. S1 WB analysis of STING pathway after treated with different dose of OVs for 24 h.



Fig. S2 WB analysis of STING pathway after treated with OV,  $Mn^{2+}$ ,  $OV+Mn^{2+}$  for 24 h.



Fig. S3. The size distribution of OV, OV-MnO<sub>2</sub>, and OV-MnO<sub>2</sub>/HE nanoagonist by DLS.



Fig. S4. The stability of OV-MnO\_2 and OV-MnO\_2/HE at 4  $^{\circ}\mathrm{C}.$ 



Fig. S5. Degradation behavior of OV-MnO<sub>2</sub> with GSH. (A) Absorption spectra of OV-MnO<sub>2</sub> treated with GSH at different time. (B) The degradation behavior of OV-MnO<sub>2</sub> dispersed water with GSH determined by the absorbance of  $MnO_2$  at 400 nm.



Fig. S6. FTIR spectra of OV-MnO $_2$  and OV-MnO $_2/HE.$ 



Fig. S7. OVs release profile of OV- $MnO_2/HE$  in PBS buffer (pH 7.4) with 10 mM GSH.



Fig. S8 Optical imaging of OV and OV-MnO\_2/HE infected-4T1 cells for 48 h. Scale bar: 100  $\mu m$ 



Fig. S9. The fluorescence imaging of 4T1 cells staining with H2DFCDA after different treatments. G1: NS; G2: OV; G3:  $MnO_2$ ; G4: OV- $MnO_2$ ; G5: OV- $MnO_2$ /HE. Scale bar: 100  $\mu$ m



Fig. S10. (A) Absorption spectra of OV- $MnO_2/HE$  treated pH 6.5 buffer with  $H_2O_2$ . (B) The O<sub>2</sub> generation ability of OV- $MnO_2/HE$  treated pH 6.5 buffer with  $H_2O_2$ .



Fig. S11. The O<sub>2</sub> generation of 4T1 cells via [Ru(ddp)3]Cl<sub>2</sub> after various treatment.G1: NS; G2: OV; G3: MnO<sub>2</sub>; G4: OV-MnO<sub>2</sub>; G5: OV-MnO<sub>2</sub>/HE. Scale bar: 100 μm



Figure S12. WB analysis for the expressions of proteins in cell apoptosis pathway in 4T1 cells. G1: NS; G2: OV; G3: MnO<sub>2</sub>; G4: OV-MnO<sub>2</sub>; G5: OV-MnO<sub>2</sub>/HE.



Fig. S13 The photos of 3D tumor spheroids after different treatments for 48 h. G1: NS; G2: OV; G3: MnO<sub>2</sub>; G4: OV-MnO<sub>2</sub>; G5: OV-MnO<sub>2</sub>/HE



Fig. S14 WB and quantitative analysis of STING pathway proteins after incubation of 4T1/DC2.4 co-culture system with OV, MnO<sub>2</sub>, OV-MnO<sub>2</sub>, and OV-MnO<sub>2</sub>/HE. G1: NS; G2: OV; G3: MnO<sub>2</sub>; G4: OV-MnO<sub>2</sub>; G5: OV-MnO<sub>2</sub>/HE



Fig. S15. Neutralization of OV and OV- $MnO_2/HE$  in 4T1 cells was performed using anti-Ad5 serum at the specified concentrations. Scale bar: 100  $\mu$ m



Fig. S16 The photographs (A) and weight (B) of the tumors in each group after treatment with different formulations. G1: NS; G2: OV; G3: MnO<sub>2</sub>; G4: OV-MnO<sub>2</sub>; G5: OV-MnO<sub>2</sub>/HE



Fig. S17. The semi-quantitative fluorescence of TUNEL data.



Fig. S18 Relative body weights of the mice during the treatment. G1: NS; G2: OV; G3: MnO<sub>2</sub>; G4: OV-MnO<sub>2</sub>; G5: OV-MnO<sub>2</sub>/HE



Fig. S19. HE staining of Heart, Liver, Spleen, Lung, and Kidney. G1: NS; G2: OV;G3: MnO<sub>2</sub>; G4: OV-MnO<sub>2</sub>; G5: OV-MnO<sub>2</sub>/HE. Scale bar: 50 μm



Fig. S20. Blood biochemical values of blood aspartate aminotransferase (AST), ALT, ALP, CRE, BUN, and RBC at 21 d post-injection (n = 5).



Fig. S21. The hemolysis of OV-MnO $_2$ /HE at varied concentrations.