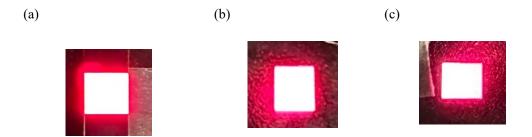
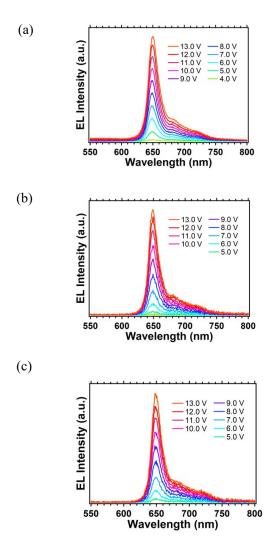
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

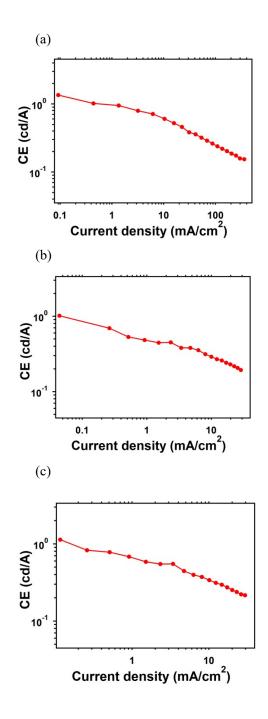
Electronic supplementary information


Enhancement of circularly polarized electroluminescence via reflection reversal under a magnetic field

Seika Suzuki, ^a Yuta Yamamoto, ^a Maho Kitahara, ^a Ryuta Shikura, ^b Shigeyuki Yagi, ^b Yoshitane Imai *a


^aGraduate School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.

Email: y-imai@apch.kindai.ac.jp


^bDepartment of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.

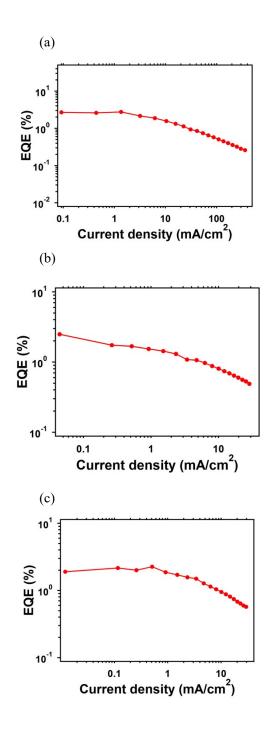

Figure S1. Photographs of electroluminescence (EL) from (a) Al/ITO-Device I, (b) MgAg/ITO-Device II, and (c) ITO/MgAg-Device II at 13 V.

Figure S2. EL spectra of (a) Al/ITO-Device I, (b) MgAg/ITO-Device II, and (c) ITO/MgAg-Device II at various voltages.

Figure S3. Current efficiencies (CE) as a function of current density for (a) Al/ITO-Device I, (b) MgAg/ITO-Device II, and (c) ITO/MgAg-Device II at 13 V.

Figure S4. External quantum efficiencies (EQE) as a function of current density for (a) Al/ITO-Device I, (b) MgAg/ITO-Device II, and (c) ITO/MgAg-Device II at 13 V.