Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supplementary Material

Alkali metal doped two dimensional Janus Cr₂Br₃I₃ monolayers with quantum anomalous Hall effect

Xiang Yin^a, Li Deng^a, Yanzhao Wu^a, Junwei Tong^b, Feifei Luo^a, Fubo Tian^c, and Xianmin Zhang^{a*} ^aKey Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang, 110819, China ^bDepartment of Physics, Freie Universität Berlin, Berlin, 14195, Germany ^cState Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China

*E-mail: zhangxm@atm.neu.edu.cn

Fig. S1 The phonon dispersion spectra of the (a) Li- and (c) K doped ML $Cr_2Br_3I_3$. Total energy fluctuation at AIMD simulations of the (b) Li- and (d) K doped ML $Cr_2Br_3I_3$. The insets in (b) and (d) shows snapshots of the Li- and K doped ML $Cr_2Br_3I_3$ at 6 ps.

Fig. S2 (a) The strain dependence of the distance between two Cr atoms. (b) The strain dependences of α_1 angle for Cr-I-Cr and α_2 angle for Cr-Br-Cr. The insert shows the d, α_1 , and α_2 .

The strain dependence of the distance (d) between two Cr atoms is drawn in Fig. S2(a). The d significantly enlarges when ε is from -1% to 0%. As shown in Fig. S2(b), both the angles of α_1 and α_2 also suddenly increase from -1% to 0%. The results clearly prove the enhancement of FM superexchange interaction. Therefore, the change of d, α_1 , and α_2 under various strains likely induces a sharp change of energy difference at $\varepsilon = 0$ through affecting the magnetic interactions in Figs. 2(a) through 2(c).

Fig. S3 Band structures of pristine ML $Cr_2Br_3I_3$. (a) without SOC. (b) with SOC. Density of states (DOS) and Projected density of states (PDOS) of pristine ML $Cr_2Br_3I_3$.

Fig. S4 DOS of (a) Li doped, (c) Na doped, and (e) K doped ML Cr₂Br₃I₃. PDOS of (b) Li doped, (d) Na doped, and (f) K doped ML Cr₂Br₃I₃.

Fig. S5 Band structures of Li doped ML $Cr_2Br_3I_3$ with SOC at different U values. (a) U = 0 eV. (b) U = 1 eV. (c) U = 2 eV.