Supplementary Material for

Superconductivity and superionic behaviors of Kagome lattice in Li-Si

compounds under high pressure

Xinwei Wang, Bohan Cao, Wenting Tang, Mengxin Yang,

Jiajin Chen, Shi Chen, Mengrui Zhang, Fubo Tian^{*}, and Liang Li^{*}

State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China

^{*} Corresponding authors. *E-mail addresses*: <u>tianfb@jlu.edu.cn</u> (F.B. Tian) and <u>lliang@jlu.edu.cn</u> (L. Li).

Contents

1. Computational details ····································
2. Dimensionality of the ISQs of Li_xSi ($x = 1-8$)
3. Phonon dispersion curves for Li_x Si ($x = 1-8$) and $\text{Li}_5X(X = \text{Ge}, \text{Sn}, \text{Sb})$
4. Features of Kagome lattices formed by ISQs7
5. Energy bands of Kagome lattice
6. Contribution of ISQs to the DOS in Kagome lattice
7. Temperature, pressure, and energy versus time in the Li ₅ Si- <i>P6/mmm</i> ······10
8. Temperature, pressure, and energy versus time in the Li_6Si-C2/m
9. Lattice parameters of the predicted stable Li-Si compounds
10. References

The VASP package [S1] is applied to perform density functional theory (DFT) [S2,S3] calculations, with the projected augmented wave pseudopotentials method [S4] to describe the electron-ion interaction, using $1s^22s^1$, $2s^22p^2$, $2s^22p^3$, $3s^23p^2$, $3s^23p^3$, $4s^24p^2$, $4s^24p^3$, $5s^25p^2$, and $5s^25p^3$ valence electronic structures of Li, C, N, Si, P, Ge, As, Sn, and Sb, respectively. The ionic positions and cell parameters are optimized with the criteria of energy and forces being 10^{-5} eV and 0.002 eV/Å, respectively. A sphere with a Wigner-Seitz radius of 1.20 Å is used to obtain the projected density of states on the interstitial position. In *ab initio* molecular dynamics (AIMD) simulations for each temperature, the volume of the simulated system is adjusted to ensure that the pressure varies over a range of less than 1 GPa. The cutoff energy is set 600 eV. We computed the electron-phonon coupling strength and solved the Eliashberg equation. Based on the theory of traditional superconductivity BCS theory and Allen-McMillan equation [S5-S9]:

$$T_{\rm c} = \frac{\omega_{\rm log}}{1.2} \exp\left[\frac{-1.04(1+\lambda)}{\lambda(1-0.62\mu^*) - \mu^*}\right].$$
 (1)

Typical Coulomb pseudpotential parameter μ^* are set with $\mu^* = 0.1$. The integrated EPC strength λ is given by:

$$\lambda = 2 \int_0^\infty \frac{\alpha^2 F(\omega)}{\omega} d\omega.$$
 (2)

Eliashberg spectral function is obtained by:

$$\alpha^{2}F(\omega) = \frac{1}{2\pi N(\varepsilon_{F})} \sum_{q\nu} \frac{\gamma_{q\nu}}{\omega_{q\nu}} \delta(\omega - \omega_{q\nu})$$
(3)

Phonon wave vector is labeled by \mathbf{q} and $\omega_{\mathbf{q}\nu}$ represent phonon frequency mode ν at \mathbf{q} . Frequency moments ω_{\log} are calculated by:

$$\omega_{\log} = \exp\left[\frac{2}{\lambda} \int_{0}^{\infty} \frac{d\omega}{\omega} \alpha^{2} F(\omega)\right].$$
(4)

Supplementary Material

Fig. S1. Charge densities as well as electron localization functions of the Li-Si system: (a) LiSi-*I*4₁/*a* at 0 GPa, (b) LiSi-*P*4/*mmm* at 20 GPa, (c) LiSi-*Pm*-3*m* at 120 GPa, (d) Li₂Si- *I*4/*mmm* at 120 GPa, (e) Li₂Si- *P*6/*mmm* at 50 GPa, (f) Li₃Si- *Fmmm* at 100 GPa, (g) Li₄Si-*I*4/*m* at 45 GPa, (h) Li₅Si- *P*6/*mmm* at 10 GPa, (i) Li₆Si- *P*6/*mmm* at 10 GPa, (j) Li₇Si-*Fmmm* at 0 GPa, and (k) Li₇Si-*Imma* at 0 GPa. From the results of these analyses, it can be observed that the dimensionality of the ISQs covers 0D, 1D, and 2D.

Fig. S2. Phonon dispersion curves for the corresponding structures of Li-Si, Li-Ge, Li-Sn, and Li-Sb systems: (a) Li₂Si-*P6/mmm* at 150 GPa, (b) Li₃Si-*P6/mmm* at 150 GPa, (c) Li₃Si-*Fmmm* at 150 GPa, (d) Li₄Si-*C2/m* at 30 GPa, (e) Li₄Si-*I4/mmm* at 150 GPa, (f) Li₅Si-*P6/mmm* at 50 GPa, (g) Li₅Si-*C2/m* at 150 GPa, (h) Li₆Si-*R*-3*m* at 30 GPa, (i) Li₆Si-*C2/m* at 150 GPa, (j) Li₇Si-*Fmmm* at 10 GPa, (k) Li₅Ge-*P6/mmm* at 50 GPa, (l) Li₅Sn-*P6/mmm* at 50 GPa, and (m) Li₅Sb-*P6/mmm* at 50 GPa. The calculated phonon dispersion curves have no imaginary frequencies.

Fig. S3. Atomic structures, charge densities, and electron localization functions of the *P6/mmm* phases: (a) Li_5C -*P6/mmm* at 50 GPa with isovalue = 0.75, (b) Li_5N -*P6/mmm* at 150 GPa with isovalue = 0.89, (c) Li_5Si -*P6/mmm* at 50 GPa with isovalue = 0.55, (d) Li_5As -*P6/mmm* at 40 GPa with isovalue = 0.78, (e) Li_5Sn -*P6/mmm* at 50 GPa with isovalue = 0.6, and (f) Li_5Sb -*P6/mmm* at 50 GPa with isovalue = 0.65.

Fig. S4. Energy bands of Kagome lattice formation: (a) Li₅C-*P6/mmm* at 150 GPa, (b) Li₅N-*P6/mmm* at 150 GPa, (c) Li₅Si-*P6/mmm* at 50 GPa, (d) Li₅As-*P6/mmm* at 40 GPa, (e) Li₅Sn-*P6/mmm* at 50 GPa, and (f) Li₅Sb-*P6/mmm* at 50 GPa.

Fig. S5. Contribution of ISQs to the density of states in the Li₅P-P6/mmm phase: (a) at 0 GPa and (b) at 100 GPa.

Supplementary Material

Fig. S6. Temperature, pressure, and energy versus time in the Li₅Si-*P6/mmm* phase at (a) 1600 K, (b) 1800 K, (c) 2000 K, and (d) 2400 K. The results indicate that the corresponding systems are highly stable.

Fig. S7. Temperature, pressure, and energy versus time in the Li₆Si-C2/*m* phase at pressure of 50 GPa: (a) 300 K,
(b) 1000 K, and (c) 2200 K.

Compounds & Pressures	Lattice parameters (Å)	Wyckoff positions	x	У	Ζ
Li ₃ Si	$a = 3.76060 \alpha = 90$	Li (3g)	0.50000	0.50000	0.50000
P6/mmm	$b = 3.76060 \beta = 90$	Si (1a)	0.00000	0.00000	0.00000
(150 GPa)	$c = 2.03850 \gamma = 120$				
Li ₄ Si	$a = 7.68420$ $\alpha = 90$	Li1 (4i)	0.40293	1.50000	1.10653
<i>C</i> 2/ <i>m</i>	$b = 4.46665 \beta = 138.84$	Li2 (4i)	1.22734	1.50000	2.33982
(0 GPa)	$c = 6.79514$ $\gamma = 90$	Si (2d)	0.00000	0.50000	0.50000
Li ₄ Si	$a = 4.10054$ $\alpha = 90$	Li (8j)	-0.50000	0.20200	0.00000
I4/mmm	$b = 4.10054 \beta = 90$	Si (2a)	-1.00000	-0.00000	-0.00000
(150 GPa)	$c = 3.46897 \gamma = 90$				
Li ₅ Si	$a = 4.09674$ $\alpha = 90$	Li1 (4h)	0.66667	0.33333	0.21845
P6/mmm	$b = 4.09674 \beta = 90$	Li2 (1b)	0.00000	-0.00000	1.50000
(10 GPa)	$c = 5.05114$ $\gamma = 120$	Si (1a)	0.00000	0.00000	0.00000
Li ₅ Si	$a = 5.57710$ $\alpha = 90$	Li1 (8j)	-0.20659	0.20248	-0.57364
<i>C</i> 2/ <i>m</i>	$b = 4.08330$ $\beta = 128.17$	Li2 (4g)	-0.00000	0.79335	-0.00000
(150 GPa)	$c = 7.39580 \gamma = 90$	Li3 (4i)	-0.16247	0.50000	-0.70064
		Li4 (4i)	0.05659	0.50000	-0.13898
		Si (4i)	-0.39953	0.50000	-0.21960
Li ₆ Si	$a = 3.82830$ $\alpha = 90$	Li1 (6c)	1.33333	-0.33333	0.45743
<i>R</i> -3 <i>m</i>	$b = 3.82830 \beta = 90$	Li2 (6c)	0.66667	-0.66667	0.24630
(30 GPa)	$c = 16.3242 \gamma = 120$	Li3 (6c)	0.33333	-0.33333	0.03736
		Si (3b)	1.00000	-1.00000	0.50000
Li ₆ Si	$a = 5.84224$ $\alpha = 90$	Li1 (8j)	0.67289	-0.28609	0.12204
<i>C</i> 2/ <i>m</i>	$b = 4.12375 \beta = 114.52$	Li2 (4i)	0.09351	-0.50000	-1.61285
(150 GPa)	$c = 3.57250 \gamma = 90$	Si (2c)	0.50000	-0.50000	-0.50000
Li ₇ Si	$a = 11.5614$ $\alpha = 90$	Li1 (16l)	0.10988	0.25000	-0.25000
Fmmm	$b = 6.37239 \beta = 90$	Li2 (8g)	-0.27723	0.50000	-0.50000
(10 GPa)	$c = 5.54330 \gamma = 90$	Li3 (4a)	-0.00000	0.50000	-0.50000
		Si (4b)	-0.00000	1.00000	-0.50000
Li ₇ Si	$a = 8.06591$ $\alpha = 90$	Li1 (8i)	-0.21949	-0.25000	0.62665
Fmmm	$b = 3.76992$ $\beta = 90$	Li2 (8i)	0.12269	-0.25000	1.06029
(50 GPa)	$c = 8.72480 \gamma = 90$	Li3 (4e)	-0.00000	-0.25000	0.53773
		Li4 (4e)	0.00000	-0.25000	0.80904
		Si (8i)	0.37478	0.25000	0.80231
Li ₇ Si	$a = 5.89769$ $\alpha = 90$	Li1 (8j)	0.55361	-0.31084	0.38060
<i>C</i> 2/ <i>m</i>	$b = 4.06788$ $\beta = 134.03$	Li2 (8j)	0.78201	-0.20446	0.94002
(150 GPa)	$c = 10.3443 \gamma = 90$	Li3 (4i)	0.17368	-0.50000	0.15590
		Li4 (4i)	0.89942	-0.50000	0.70442

Table S1 Lattice parameters, atomic coordinates, and equivalent isotropic displacement parameters of the predicted stable Li-Si phases.

Supplementary Material

		Li5 (4i)	0.63762 -0.50000 0.22065
		Si (4h)	0.50000 -0.80071 0.50000
Li ₈ Si	$a = 4.40650$ $\alpha = 90$	Li1 (2c)	1.00000 1.00000 0.69121
<i>R</i> -3 <i>m</i>	$b = 4.40650 \beta = 90$	Li2 (2d)	1.33333 0.666667 0.45634
(0 GPa)	$c = 8.43180 \gamma = 120$	Li3 (2d)	0.66667 0.33333 0.17924
		Li4 (2d)	0.66667 0.33333 -0.10385
		Si (1a)	1.00000 1.00000 0.00000
Li ₈ Si	$a = 5.97224$ $\alpha = 90$	Li1 (8j)	0.50867 -0.18891 0.21749
C2/m	$b = 4.01358 \beta = 144.78$	Li2 (4i)	-0.01120 -0.00000 -0.64065
(150 GPa)	$c = 7.10957$ $\gamma = 120$	Li3 (4g)	0.50000 -0.30192 -0.00000
		Si (2d)	0.00000 -0.50000 -0.50000
Li ₅ Ge	$a = 4.35430$ $\alpha = 90$	Li1 (1b)	-1.00000 0.00000 -0.50000
P6/mmm	$b = 4.35430 \beta = 90$	Li2 (4h)	-0.66667 0.66667 -0.78023
(0 GPa)	$c = 5.35750 \gamma = 120$	Si (1a)	-1.00000 0.00000 -0.00000
Li ₅ Sn	$a = 4.68550$ $\alpha = 90$	Li1 (4h)	0.66667 0.33333 0.22681
P6/mmm	$b = 4.68550 \beta = 90$	Li2 (1b)	0.00000 0.00000 0.50000
(0 GPa)	$c = 5.75500 \gamma = 120$	Si (1a)	0.00000 0.00000 0.00000
Li ₅ Sb	$a = 4.52590$ $\alpha = 90$	Li1 (4h)	0.66667 -0.66667 -0.76225
P6/mmm	$b = 4.52590 \beta = 90$	Li2 (1b)	-0.00000 -1.00000 -0.50000
(0 GPa)	$c = 5.50810$ $\gamma = 120$	Si (1a)	-0.00000 -1.00000 -0.00000

- [S1] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
- [S2] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
- [S3] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
- [S4] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
- [S5] K. Kitazawa, M. Naito, T. Itoh, and S. Tanaka, J. Phys. Soc. JPN. 54, 2682 (1985).
- [S6] L. N. Oliveira, E. K. U. Gross, and W. Kohn, Phys. Rev. Lett. 60, 2430 (1988).
- [S7] M. Lüders, M. A. L. Marques, N. N. Lathiotakis, A. Floris, G. Profeta, L. Fast, A. Continenza, S. Massidda, and E. K. U. Gross, Phys. Rev. B 72, 024545 (2005).
- [S8] M. A. L. Marques, M. Lüders, N. N. Lathiotakis, G. Profeta, A. Floris, L. Fast, A. Continenza,E. K. U. Gross, and S. Massidda, Phys. Rev. B 72, 024546 (2005).