Electronic Supplementary Information

Heterostructure made from Bone-like Plasmonic Au Nanoantennas and ZnO Quantum Dots for Broadband Photodetectors

Bingwu Liu^a, Xi Xie^b, Yuan Feng^a, Pu Chen^a, Dong Li^a, Huan Cheng^a, Changjun Min^{b,*}, Oinglin Zhang^{c,*}, Jiawen Hu^{a,*}

^{*a*}Hunan Key Laboratory of Two-Dimensional Materials, Advanced Catalytic Engineering Research Center of the Ministry of Education, and College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.

^bNanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.

^cCollege of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China.

*Corresponding emails: cjmin@szu.edu.cn; qinglin.zhang@hnu.edu.cn; jwhu@hnu.edu.cn

Figure S1. (a) Schematic setup and boundary absorption conditions used for the simulation of electromagnetic field around the BLAuNA2/ZnO heterostructure. (b) BLAuNAs model with a height of 60 nm used for the FDTD simulation.

Figure S2. SEM images of (a) 2- and (b) 3-ML Au NP films.

Figure S3. (a) Linear scan curves and (b) chronoamperometric curves for the 1-, 2-,

and 3-ML Au-NP films at 0.7 V (vs. MSE) in a 0.5 M KCl solution.

Figure S4. (a, c, and e) top-view and (b, d, and f) side-view AFM images of the (a, b) 1-, (c, d) 2-, and (e, f) 3-ML AuNP films after electrochemical treatment at 0.7 V (vs. MSE) in 0.5 M KCl solution for 120 s.

Figure S5. Cross-sectional SEM images of (a) pristine ZnO QDs film, (b) BLAuNA1/ZnO heterostructure, (c) BLAuNA2/ZnO heterostructure, and (d) BLAuNA3/ZnO heterostructure.

Figure S6. Rise/decay time of (a) the BLAuNA1/ZnO heterostructures photodetector and (b) the BLAuNA3/ZnO heterostructures photodetector under the illumination of the 365 nm light (16.9 mW/cm²) at a bias voltage of 5 V.

1						
Materials	Light source (nm)	Bias (V)	R (mA/W)	<i>t</i> _r (s)	$t_{\rm d}\left({ m s} ight)$	EQE (%)
p-ZnO-Au ¹	245	5	_	24	15	_
Au NPs/CdMoO ₄ microplates/ZnO film ²	350	5	321.1	16	9.2	_
ZnO/Au nanoantennas ³	365	10	231.4	3.55	1.49	78.8
Au–NPs/MoO ₃ /Si ⁴	420	1	0.0035	0.035	0.038	_
Au NPs/IZO PD ⁵	410 515	1	~100 ~0.2	_	_	_
Au-ZnO nanocomposite ⁶	UV 550	5	~60 ~0.37	_	_	_
Au NPs/p-ZnO NSs/n-ZnO ⁷	365 520	1	25.4 0.58	~70	~150	~8.7
Au NPs/TiO ₂ /ZnO:Y NWs ⁸	365 525	1	14.8 ~1	<1 ~94	~30 ~187	5.1
BL-AuNA2/ZnO	365	-	61.4	8.9	8.4	21.8
heterostructures (this work)	532	5	~0.05	6.5	20	11.3

Table S1. Comparison of the performance of the current BL-AuNA2/ZnO

heterostructures photodetector and other photodetectors made from semiconductor

materials combined with plasmonic nanostructures.

Figure S7. *I–t* response of the pure ZnO QDs photodetector and the optimal BLAuNA2/ZnO heterostructure photodetector at a bias voltage of 5 V and under intermittent 532 nm light illumination (37.9 mW/cm^2).

Figure S8. (a) I-V curves of the BLAuNA2/ZnO heterostructures photodetector in dark conditions and under 532 nm light illumination at different power densities. (b) R and (c) D and EQE versus light power density at a bias voltage of 5 V. (d) Rise/decay time of the photodetector measured at a power density of 37.9 mW/cm².

References

- M. Sun, Z. Xu, M. Yin, Q. Lin, L. Lu, X. Xue, X. Zhu, Y. Cui, Z. Fan, Y. Ding,
 L. Tian, H. Wang, X. Chen and D. Li, *Nanoscale*, 2016, 8, 8924-8930.
- 2 W. Ouyang, F. Teng, M. Jiang and X. Fang, *Small*, 2017, **13**, 1702177.
- S. Liu, M.-Y. Li, D. Su, M. Yu, H. Kan, H. Liu, X. Wang and S. Jiang, ACS Appl.
 Mater. Interfaces, 2018, 10, 32516-32525.
- 4 R. Singh, M. Kumar, U. Kim and H. Seo, *Adv. Electron. Mater.*, 2022, **8**, 2200392.
- 5 C.-F. Lin, A. Khitous, H.-W. Zan and O. Soppera, *Adv. Opt. Mater.*, 2021, **9**, 2100045.
- N. Gogurla, A. K. Sinha, S. Santra, S. Manna and S. K. Ray, *Sci. Rep.*, 2014, 4, 6483.
- 7 C.-L. Hsu, Y.-H. Lin, L.-K. Wang, T.-J. Hsueh, S.-P. Chang and S.-J. Chang, ACS Appl. Mater. Interfaces, 2017, 9, 14935-14944.
- 8 C.-L. Hsu, H.-Y. Wu, C.-C. Fang and S.-P. Chang, *ACS Appl. Energy Mater.*, 2018, **1**, 2087-2095.