Supplemental material

High-performance artificial synapse based on two-dimensional $MoSe_2$ powder with Se vacancy

Xinci Chen,^a Li Deng,^a Feifei Luo,^a Yanzhao Wu,^a Fubo Tian,^b Xianmin Zhang^a* ^aKey Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang, 110819, China

^bState Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China

*Corresponding email: <u>zhangxm@atm.neu.edu.cn</u>

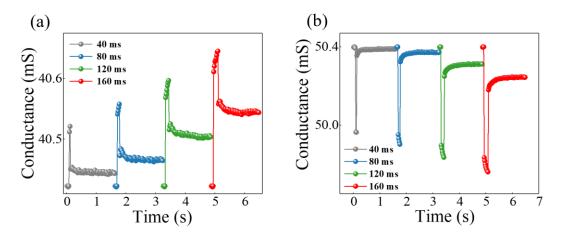


Figure S1. The conductance response of $MoSe_2$ device with different pulse widths (40-160 ms) under (a) 1.5 V and (b) -1.5 V pulse voltages.