Supporting Information

Bio-inspired, robust, and anti-swelling hydrogel sensors for underwater information transmission

Shenxin Pan^a, Changzheng Xiang^b, Zhendong Liu^b, Gangsheng Tong^{a,c*}, Chongyin Zhang^{c*} and Xinyuan Zhu^{a,c*}

^aSchool of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China

^bAerospace system engineering Shanghai, Yuanjiang Road #3888, Shanghai City, 201109, China ^cShanghai Engineering Research Center of Specialized Polymer Materials for Aerospace, Shanghai Aerospace Equipments Manufacturer Co. Ltd.,100 Huaning Road, Shanghai 200245, China

E-mail address: tgs@sjtu.edu.cn (G. S. Tong); xyzhu@sjtu.edu.cn (X. Y. Zhu);

Fig. S1. Diagram of preparation and swelling process of the hydrogels.

Fig. S2. Conductivity of the P(AA-LMA)_{CTAB}- Zr^{4+} -Eq hydrogels (Zr^{4+} /AA molar ratio of 3%)

after swelling in deionized water for different days.