Supporting Information for

Enhanced stability and tunable optoelectronic properties of novel

silicon-carbon monolayer by strain and surface functionalization

Huabing Shu* and Jiyuan Guo

School of Science, Jiangsu University of Science and Technology, Zhenjiang 212001,

China

**E-mail: shuhuabing@just.edu.cn*

Fig. S1 Phonon spectra of Si₂C monolayer under tensile strains of $\delta = +15\%$ and +16%.

Fig. S2 Partial charge densities of Si₂C monolayer at the biaxial tensile strain $\delta = 0$, +3%, and +8%. (Isosurface value: $2.0 \times 10^{-3} \text{ e/Å}^3$).

Fig. S3 Quasi-particle band structures of Si_2C monolayer at the biaxial tensile strains of +10% and +12%.

Fig. S4 Imaginary part (ε_2) of the dielectric function of the Si₂C monolayer from the G_0W_0 +BSE method along the lattice vector **a** and **c**, respectively. A Lorentzian broadening of 0.10 eV is adopted in these curves.