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General experimental information

Commercially available chemicals were used directly as received. All solvents for the reactions
were dried and distilled via standard methods prior to use. The reactions were monitored using thin-
layer chromatography (TLC) materials purchased from Merck & Co., Inc. Flash column
chromatography and preparative TLC plates were performed with silica gel purchased from
Shenghai Qingdao (300-400 mesh). 'H and '3C NMR spectra were recorded in CDCl; or DMSO-d;
on a Bruker Avance 400 MHz spectrometer. Chemical shifts were referenced to the solvent residual
peak at 6 7.26 ppm for 'H and 77.0 ppm for 3C NMR spectra in CDCls; at 8 2.50 ppm for 'H NMR
spectra in DMSO-dg, respectively. UV-vis absorption spectra were recorded on a Perkin Elmer
Lambda 950 spectrophotometer. Emission spectra and lifetimes for the final cyclometalated Ir(III)
complexes were performed on an Edinburgh Instruments, Ltd., (FLSP 920) fluorescence
spectrophotometer. Photoluminescence quantum yields (PLQY's) in solution or in doped TCTA films
were measured on an Edinburgh Instruments, Ltd., (FLSP 920) fluorescence spectrophotometer with
an integrating sphere. The thermal gravimetric analysis data were collected on a NETZSCH STA
409C instrument. Cyclic voltammetry (CV) was performed with a Princeton Applied Research
model 273 A potentiostat at a scan rate of 100 mV s-!. All the CV measurements were carried out in a
three-electrode compartment cell with a Pt-sheet counter electrode, a glassy-carbon working
electrode, and an Ag/AgCl reference electrode. The supporting electrolyte was a 0.1 M acetonitrile
solution of [nBuyN]|BF,, using ferrocene as internal standard. The data of elemental analyses were
acquired on a Flash EA 1112 elemental analyzer. Fast atom bombardment (FAB) mass spectra were
recorded on a Finnigan MAT SSQ710 system. The HRMS data were obtained on a Waters I-class

Vion IMS QTof micro-spectrometer.
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Scheme S1 Synthetic routes of the ligands L2CzNPO and L3CzNPO.

General synthetic procedure of P2Cz and P3Cz. Under a nitrogen atmosphere, to a solution of 2-
bromo-9H-carbazole/ 3-bromo-9H-carbazole (1.0 equiv) and catalyst Pd(PPh;), (0.03 equiv) in
toluene was dropwise added 2-(tributylstannyl)pyridine (1.1 equiv). The reaction mixture was
magnetically stirred at 110 °C for 16 h. After the reaction mixture was cooled to room temperature,

the solvent was evaporated to dryness under vacuum. The residue was chromatographed by a silica

gel column using dichoromethane/ethyl acetate (60/1, v/v) as eluent.

P2Cz. yield: 57.3%. 'H NMR (400 MHz, CDCls, 5): 8.44 (d, J = 2.0 Hz, 1H), 8.07 (dd, J = 8.8, 2.0
Hz, 1H), 7.86 (d, J = 8.8 Hz, 2H), 7.63 (d, J = 7.6 Hz, 1H), 7.46 (t, J = 7.2 Hz, 1H), 7.35 (t, J= 7.6

Hz, 1H), 7.27 — 7.25 (m, 1H), 7.22 (t, J = 7.2 Hz, 2H), 7.18 — 7.15 (m, 1H); FAB-MS (m/z): 244

[M]".

P3Cz. yield: 55.2%. 'H NMR (400 MHz, DMSO-dg, 8): 11.41 (s, 1H), 8.88 (s, 1H), 8.66 (dd, J=4.8,
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1.2 Hz, 1H), 8.22 (d, /= 8.0 Hz, 1H), 8.18 (dd, /= 8.0, 1.6 Hz, 1H), 8.05 (d, /= 8.0 Hz, 1H), 7.87 (t,
J=8.0 Hz, 1H), 7.56 (d, J = 8.8 Hz, 1H), 7.51 (d, J = 8.0 Hz, 1H), 7.41 (td, J = 8.0, 0.8 Hz, 1H),
7.29 (t,J = 5.6 Hz, 1H), 7.19 (t, /= 7.2 Hz, 1H); FAB-MS (m/z): 244 [M]".

General synthetic procedure of L2CzNPO and L3CzNPO. Under a nitrogen atmosphere, to a
dissolved solution of P2Cz/P3Cz (1.0 equiv) in dry THF was add n-BuLi (1.2 equiv) slowly at -78
°C. After addition, the mixture was stirred at such a temperature for 45 min. Then,
Chlorodiphenylphosphine (1.3 equiv) was added dropwise and the mixture was allowed to return to
room temperature naturally. After stirring 4 h, the mixture was quenched by ice water. Subsequently,
hydrogen peroxide (7.0 equiv, 33 wt% in water) was added slowly to complete the oxidation under
vigorous stirring for 1 h. Finally, the mixture was extracted with dichloromethane 3 times and the
organic phase was dried with anhydrous Na,SO,. The solvent was removed under reduced pressure
and the residue was purified on a silica gel column chromatography using dichloromethane/ethyl
acetate (8/1, v/v) as eluent to give the target ligands.

L2CzNPO. yield: 64.7%. 'H NMR (400 MHz, CDCl;, 8): 8.61 (dd, J=4.8, 0.8 Hz, 1H), 8.11 (d, J=
8.4 Hz, 1H), 8.06 — 8.03 (m, 2H), 7.81 — 7.75 (m, 5H), 7.65 — 7.61 (m, 3H), 7.52 — 7.47 (m, 4H),
7.43 (d, J=8.4 Hz, 1H), 7.37 (d, /= 8.0 Hz, 1H), 7.29 (td, J = 7.2, 0.8 Hz, 1H), 7.22 (td, J=7.2, 1.2
Hz, 1H), 7.15 (ddd, J=7.6, 4.8, 0.8 Hz, 1H);3'P NMR (162 MHz, CDCl;, 8): 26.37; FAB-MS (m/z):
444 [M]*.

L3CzNPO. yield: 63.4%. '"H NMR (400 MHz, CDCl;, 8): 8.71 — 8.69 (m, 2H), 8.12 (d, J = 7.6 Hz,
1H), 7.83 — 7.73 (m, 7H), 7.63 (td, J = 7.2, 1.2 Hz, 2H), 7.50 (td, J = 7.6, 3.2 Hz, 4H), 7.37 (d, J =
8.4 Hz, 1H), 7.31 — 7.28 (m, 2H), 7.25 — 7.20 (m, 2H); *'P NMR (162 MHz, CDCl;, 8): 27.28; FAB-
MS (m/z): 444 [M]*.
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General synthetic procedure of Ir2CzNPO and Ir3CzNPO.Under a nitrogen atmosphere, to a
mixture of THF and H,0O (3/1, v/v) were added L2CzNPO/L3CzNPO (2.2 equiv) and IrCl;-nH,0
(1.0 equiv, 60 wt% Ir content). The reaction mixture was stirred at 110 °C for 16 h. After cooled to
room temperature, the resultant mixture was poured into a saturated solution of NaCl. The
precipitated colored Ir(IIl) z-chloro-bridged dimer was obtained through filtration and dried under
vacuum. Subsequently, thallium(I) acetylacetonate [Tl(acac)] (2.2 equiv) was added to an dry
CH,Cl, solution of the colored Ir(IIl) z-chloro-bridged dimer (1.0 equiv). The reaction mixture was
stirred at room temperature overnight. Centrifugation was conducted to remove the inorganic salt,
and the solvent was removed under vacuum from the organic phase. The residue was purified with
preparative thin-layer chromatography (TLC) made of silica gel using proper eluent. Caution:
thallium(I) acetylacetonate (Tl(acac)) is extremely toxic and must be dealt with carefully.
Ir2CzNPO. yield: 32.8%. 'H NMR (400 MHz, CDCls, 8): 8.56 (d, J = 5.2 Hz, 2H), 7.74 — 7.67 (m,
10H), 7.62 — 7.57 (m, 4H), 7.53 (d, J = 6.8 Hz, 2H), 7.48 — 7.42 (m, 12H), 7.18 — 7.09 (m, 4H), 7.05
—17.00 (m, 4H), 6.76 (s, 2H), 5.22 (s, 1H), 1.78 (s, 6H); *C NMR (100 MHz, CDCls, 3): 184.63,
168.72, 148.20, 143.36, 142.03, 138.02, 137.65, 136.56, 132.86, 132.84, 132.80, 132.78, 132.33,
132.31, 132.26, 132.24, 131.77, 131.67, 130.93, 130.84, 129.00, 128.91, 128.10, 128.06, 125.91,
122.97, 121.38, 121.23, 120.07, 118.74, 114.61, 111.03, 100.55, 28.84; 3'P NMR (162 MHz, CDCl;,
0): 25.33; MS (m/z) theoretical [M+Na]™: 1201.2599, Found: 1201.2640;; Anal. Calcd for
Ce3Ha7IrN,O4P5: C, 64.22; H, 4.02; N, 4.76; found: C, 64.18; H, 4.01; N. 4.71%.

Ir3CzNPO. yield: 30.2%. 'H NMR (400 MHz, CDCls, 6): 8.10 (d, J = 4.8 Hz, 2H), 8.02 (s, 2H),
7.98 (d,J=7.6 Hz, 2H), 7.75 (d, J = 8.4 Hz, 2H), 7.69 (d, J = 8.4 Hz, 2H), 7.65 (td, J = 8.0, 1.2 Hz,
2H), 7.43 —7.36 (m, 6H), 7.30 — 7.15 (m, 14H), 6.99 — 6.92 (m, 6H), 6.03 (s, 2H), 5.12 (s, 1H), 1.68
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(s, 6H); 3C NMR (100 MHz, CDCl;, 8): 184.47, 167.71, 147.68, 146.08, 142.09, 141.59, 138.98,
136.41, 132.29, 132.28, 132.22, 132.21, 131.58, 131.56, 131.51, 131.49, 131.28, 130.54, 130.44,
129.72, 128.52, 128.44, 128.36, 127.48, 127.44, 125.10, 121.98, 120.88, 120.84, 119.52, 117.99,
117.89, 115.60, 115.55, 100.28, 28.57; 3'P NMR (162 MHz, CDCl;, 8): 26.66; MS (m/z) theoretical
[M+Na]*: 1201.2599, Found: 1201.2645; Anal. Calcd for Cs3H47IrN4O4P;: C, 64.22; H, 4.02; N, 4.76;
found: C, 64.15; H, 3.99; N. 4.73%.

Theoretical computation. DFT calculations were conducted with the B3LYP method for all the
final unsymmetric heteroleptic cyclometalated Ir(III) complexes. The 6-31G (d, p) basis set was
applied for non-metallic C, H, O, and N atoms, while a LanL.2DZ basis set for effective core
potentials were employed for Ir atoms.!: > Excitation behaviors were acquired by the TD-DFT
calculations on the basis of the optimized ground state (Sy) geometries. Additionally, the lowest
triplet state (T;) geometries were optimized using the UB3LYP method and analysis of the natural
transition orbital (NTO) was carried out for S, — T; excitation. All of the calculations were
performed using the Gaussian 09 program.’

OLED Fabrication and Measurements. The pre-cleaned ITO glass substrates were treated with
ozone for 20 min to remove residues of organic materials. Afterwards, PEDOT:PSS was spin-coated
on the surface of ITO glass substrates to form a 30 nm-thick hole-injection layer and annealed at 150
°C for 15 min in the air. Then, a 25 nm-thick hole transport layer was prepared by spin-coating the
chlorobenzene solution of PVK on the surface of PEDOT:PSS layer and annealed at 120 °C for 10
min in a glove box. Subsequently, spin-coating the Ir(Ill) complex and Tris(4-carbazoyl-9-
ylphenyl)amine (TCTA) was conducted to obtained a 20 nm-thick doped TCTA region as the
emissive layer. Finally, 1,3,5-tri(mpyridin-3-ylphenyl)benzene (TmPyPb) (40 nm), LiF (1 nm) and
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Al cathode (100 nm) were successively evaporated at a base pressure less than 1076 Torr. The EL
spectra and CIE coordinates were recorded using a PR650 spectra colorimeter. The J—V—L curves of
the devices were recorded by a Keithley 2400/2000 source meter and the luminance was measured
using a PR650 SpectraScan spectrometer. All of the experiments and measurements were conducted
under ambient conditions.
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Fig. S1 High Resolution Mass Spectra (HRMS) of Ir2CzNPO and Ir3CzNPO.
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Fig. S2 HOMO (left) and LUMO (right) distribution patterns (isocontour value = 0.030) of the
parental Ir(ppy).(acac) (ppy = 2-phenylpyridine) on the basis of their optimized S, geometries.
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Fig. S3 Photoluminescent (PL) spectra of these carbazole-based cyclometalated Ir(IIl) complexes
with the N-P=0 resonant variation skeleton in CH,Cl, solution recorded at 77 K.
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Fig. S4 Photoluminescent (PL) spectra of these carbazole-based cyclometalated Ir(IIl) complexes
with the N-P=0 resonant variation skeleton in an 8 wt% (Ir2CzNPO) or 4 wt% (Ir3CzNPO) doped
TCTA film.
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Fig. S5 Time-gated PL spectra of Ir2CzNPO (a, b) and Ir3CzNPO (c, d).
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Fig. S6 Temperature-dependent PL spectra of Ir2CzNPO (a, b) and Ir3CzNPO (c, d).
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Fig. S7 Transient photoluminescence (PL) spectra of Ir2CzNPO in CH,Cl, (ca. 103 M) solution
under degassed condition at 293 K.
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Fig. S8 Transient photoluminescence (PL) spectra of Ir3CzNPO in CH,Cl, (ca. 103 M) solution
under degassed condition at 293 K.
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Fig. S9 Transient photoluminescence (PL) spectra of Ir2CzNPO in CH,Cl, (ca. 103 M) solution
under degassed condition at 77 K.
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Fig. S10 Transient photoluminescence (PL) spectra of Ir3CzNPO in CH,Cl, (ca. 103 M) solution
under degassed condition at 77 K.
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Fig. S11 Transient photoluminescence (PL) spectra of Ir2CzNPO in an 8 wt% doped TCTA film.

S17



Electronic supplementary information

1000
— Ir3CzNPO-512 nm —Ir3CzNPO-546 nm
TE“ r“*wuu !
= z
2 100 2
= =
— —
- -
100 H

0

1 2 3 4
Time (15)

&) [#3)2Y) [mal o

)]

i

Ea e === TR N = I Y

4 Ir3CzNPO-512
1 1r3CzNPO-512F2

1000 " SI 0 2000 4500

™ ook

& N

I S T S S - |

Residuals

A o b

B O A~
T

I
=0T vk & lkdes o 8 @alwE o) [ 2[°3) [da](n

500 15 = eI )0 4000 4500

Residuals

Fig. S12 Transient photoluminescence (PL) spectra of Ir3CzNPO in a 4 wt% doped TCTA film.
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Fig. S14 PLQYs of Irx2CzNPO (left) in an 8 wt% doped TCTA film and Ir3CzNPO (right) in a 4 wt%
(Ir3CzNPO) doped TCTA film.
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Fig. S15 PLQYs of Ir2CzNPO in THF/water solvent system with different £, values under the same
amount of Ir(IIl) complex molecules. Ir2CzNPO in THF solution (i.e. f, = 0%) was measured at a
concentration of ca. 10> M.
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Table S1 PLQYs of Ir2CzNPO in THF/water solvent system with different £, values under the
same amount of Ir(IIT) complex molecules.

Sw 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

PLQY 5895% 59.64% 60.86% 62.21% 65.52% 66.62% 69.41% 75.02% 66.72% 65.94%

Quantum Yieid Resits

QY = 89.01% e g, o
QY = 89.35%

Quantum Tield Rendts

QY = 89.97%

QY = 91.82%

QY = 95.29%

Quastum Tiekd Revukts

OV = 89.84%

Fig. S16 PLQYs of Ir3CzNPO in THF/water solvent system with different f;, values under the same
amount of Ir(IIT) complex molecules. Ir3CzNPO in THF solution (i.e. f, = 0%) was measured at a
concentration of ca. 10> M.

Table S2 PLQYs of Ir3CzNPO in THF/water solvent system with different f,, values under the

same amount of Ir(III) complex molecules.

Sw 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

PLQY 89.01% 89.35% 89.97% 90.79% 91.82% 93.07% 9529% 92.79% 89.84% 91.80%
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Fig. S17 UV-vis absorption spectra of Ir2CzNPO (a) and Ir3CzNPO (b) in THF/water solvent
system with different f;, values under the same amount of Ir(IIl) complex molecules.
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S18 Particle size distributions of Ir2CzNPO (a, b) and Ir3CzNPO (c, b) in THF/water solvent

system.
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Fig. S19 Transient photoluminescence (PL) spectra of Ir2CzNPO in THF/water solvent system with

different f;, values under the same amount of Ir(III) complex molecules. Ir3CzNPO in THF solution
(i.e. f = 0%) was measured at a concentration of ca. 105 M.

PL intensity (a.u.)

Table S3 PL decay lifetime of Ir2CzNPO in THF/water solvent system with different £, values
under the same amount of Ir(IIl) complex molecules.

S 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

7 (us) 0.12 0.17 0.20 0.27 0.323 0.395 0.53 0.80 0.77 0.134

1, (vol %)

—0%
—_—10%

—20%
—30%

0%
0.1 —50%
— 0%
—T0%
—80%
—0%

PL intensity (a.u.)

2 Time (3s)

Fig. S20 Transient photoluminescence (PL) spectra of Ir3CzNPO in THF/water solvent system with
different f, values under the same amount of Ir(III) complex molecules. Ir3CzNPO in THF solution
(i.e. f = 0%) was measured at a concentration of ca. 10> M.

Table S4 PL decay lifetime of Ir3CzNPO in THF/water solvent system with different f;, values
under the same amount of Ir(III) complex molecules.

Sw 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

7 (us) 0.14 0.19 0.21 0.24 0.26 0.31 0.33 0.22 0.09 0.07
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Fig. S22 Relationship between EL efficiencies and luminance for the devices except the optimized
ones.
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Fig. S23 Operation lifetimes of device A2 (Ir2CzNPO) and B2 (Ir3CzNPO).
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