Supporting Information for

General Synthesis of Magnetic Binary Transition Metal Telluride Nanocrystals

Jingxia Wang^a, Bin Wang^a, Yifen Wang^a, Ruixia Yang^a, Lanfang Wang^a, Fang Wang^a, Xiaohong, Xu^a, and Yang Liu^{b,*}

^aResearch Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 030031, China.

^bDepartment of Materials Science, Fudan University, Shanghai 200433, China.

*Correspondence should be addressed to Yang Liu (liuyang_fd@fudan.edu.cn)

Table S1. Summary of experimental parameter	rs used for the synthesis of metal telluric	le
NCs.		

	metal	M:Te	Reaction	Reaction	
	precursor	molar ratio	time (min)	temperature (°C)	Product NCs
Ni-Te	Ni(acac)2	1:2	5	250	NiTe ₂
		1:2	5	300	NiTe ₂
		1:2	60	330	NiTe ₂
		1:1.5	5	250	Ni _{0.75} Te
		1:1.5	5	300	Ni _{0.64} Te
		1:1.5	60	330	Ni _{0.53} Te
		1:1	5	250	NiTe
		1:1	5	300	NiTe
		1:1	60	330	Ni _{0.88} Te
	Ni(OAc) ₂	1:2	60	330	NiTe ₂
		1:1.5	60	300	Ni _{0.64} Te
	NiCl ₂	1:2	60	330	NiTe ₂
		1:1.5	60	300	Ni _{0.64} Te
Co-Te	Co(acac) ₂	1:2	60	300	CoTe ₂
		1:2	60	330	CoTe ₂
		1:1.5	5	250	CoTe ₂
		1:1.5	5	300	CoTe ₂
		1:1.5	60	330	Co _{0.64} Te
		1:1	5	250	CoTe ₂
		1:1	5	300	CoTe ₂
		1:1	60	330	СоТе
	Co(OAc) ₂	1:2	60	330	CoTe ₂
		1:1.5	60	330	Co _{0.67} Te
		1:1	60	330	Co _{0.83} Te
	$CoCl_2$	1:2	60	330	CoTe ₂

Fe-Te	Fe(acac) ₃	1:2	60	300	FeTe ₂
	Fe(OAc) ₂	1:2	60	330	FeTe ₂
	FeCl ₃	1:2	60	300	FeTe ₂
	FeCl ₂	1:2	60	300	FeTe ₂
Mn-Te	Mn(acac) ₂	1:2	120	330	MnTe ₂
		1:1.5	120	330	MnTe ₂
		1:1.5	60	330	MnO+MnTe ₂
		1:1.5	45	330	MnO+MnTe ₂
		1:1.5	30	330	MnO
		1:1	120	330	MnO+MnTe ₂
	Mn(acac) ₃	1:2	120	330	MnO+MnTe ₂
		1:2	120	300	MnO
	Mn(OAc) ₂	1:2	120	330	MnO
	MnCl ₂	1:2	30	300	No product
Cr-Te	Cr(CO) ₆	1:1.8	120	350	Cr ₂ Te ₃
	Cr(acac) ₃	1:1.8	120	350	No product
	CrCl ₃	1:1.8	120	350	No product
	CrCl ₂	1:1.8	120	350	No product

Fig. S1. TEM images different $NiTe_{2-x}$ nanosheets synthesized using $Ni(acac)_2$ precursor.

Fig. S2. XRD patterns of NiTe_{2-x} nanosheets: (a) NiTe₂, (b) Ni_{0.53}Te, (c) Ni_{0.64}Te, (d) Ni_{0.75}Te, (e) Ni_{0.88}Te, (f) NiTe.

Figure S3. Structural models of NiTe₂ and NiTe.

Fig. S4. HAADF and elemental maps of Ni and Te for (a) $Ni_{0.53}$ Te, (b) $Ni_{0.64}$ Te, (c) $Ni_{0.75}$ Te, (d) $Ni_{0.88}$ Te.

Fig. S5. Comparison of the Ni:Te molar ratio in various $NiTe_{2-x}$ based on quantitative EDS results and XRD patterns.

Fig. S6. XPS spectra of (a) Ni 2p, (b) Te 3d, (c) O 1s for NiTe₂ nanosheets. XPS spectra of (d) Ni 2p, (e) Te 3d, (f) O 1s for NiTe nanosheets.

Fig. S7. XRD patterns of NiTe_{2-x} nanosheets synthesized using NiCl₂ and Ni(OAc)₂ precursors: (a) NiTe₂ and (b) Ni_{0.64}Te. (c,d) TEM and HAADF images, and elemetal maps of Ni and Te of Ni_{0.64}Te nanosheets synthesized using NiCl₂. (e,f) TEM and HAADF images, and elemetal maps of Ni and Te of NiTe₂ nanosheets synthesized using NiCl₂. (g,h) TEM and HAADF images, and elemetal maps of Ni and Te of Ni_{0.64}Te nanosheets synthesized using NiCl₂. (g,h) TEM and HAADF images, and elemetal maps of Ni and Te of Ni_{0.64}Te nanosheets synthesized using Ni(OAc)₂. (i,j) TEM and HAADF images, and elemetal maps of Ni and Te of Ni_{0.64}Te nanosheets synthesized using Ni(OAc)₂. (k) Representative SAED pattern of NiTe₂ nanosheets synthesized using NiCl₂.

Fig. S8. XRD patterns of (a) Cr₂Te₃, (b) MnTe₂, (c) FeTe₂, and (d) Co_{0.64}Te.

Fig. S9. (a) XRD patterns of the synthesis of the $MnTe_2$ nanocube using $Mn(OAc)_2$, $Mn(acac)_3$, and $Mn(acac)_2$ precursors: (b-c) TEM and HAADF images, and elemetal maps of Mn, O, and Te of the mixture of $MnTe_2$ nanocube and MnO nanoparticles synthesized using $Mn(acac)_3$. (d-e) TEM and HAADF images, and elemetal maps of Mn, O, and Te of the large MnO nanoparticles synthesized using $Mn(OAc)_2$.

Fig. S10. (a) XRD patterns and TEM images of FeTe₂ NCs synthesized using (b) Fe(OAc)₂, (c) FeCl₃, and (d) FeCl₂ precursors, respectively.

Fig. S11. XRD patterns of $CoTe_{2-x}$ nanoplates synthesized using $CoCl_2$ and $Co(OAc)_2$ precursors: (a) $CoTe_2$ and (b) $Co_{0.64}Te$ and $Co_{0.83}Te$. (c-e) TEM, HRTEM and HAADF images, and elemetal maps of Co and Te of $Co_{0.83}Te$ nanoplates synthesized using $Co(OAc)_2$. (f-h) TEM, HRTEM and HAADF images, and elemetal maps of Co and Te of $Co_{0.67}Te$ nanoplates synthesized using $Co(OAc)_2$. (i-k) TEM, HRTEM and HAADF images, and elemetal maps of Co and Te of $Co_{0.67}Te$ nanoplates synthesized using $Co(OAc)_2$. (i-k) TEM, HRTEM and HAADF images, and elemetal maps of Co and Te of $CoTe_2$ nanoplates synthesized using $CoCl_2$. (l-n) TEM, HRTEM and HAADF images, and elemetal maps of Co and Te of $CoTe_2$ nanoplates synthesized using $Co(OAc)_2$. (l-n) TEM, HRTEM and HAADF images, and elemetal maps of Co and Te of $CoTe_2$ nanoplates synthesized using $Co(OAc)_2$. (l-n) TEM, HRTEM and HAADF images, and elemetal maps of Co and Te of $CoTe_2$ nanoplates synthesized using $Co(OAc)_2$. (l-n) TEM, HRTEM and HAADF images, and elemetal maps of Co and Te of $CoTe_2$ nanoplates synthesized using $Co(OAc)_2$. (l-n) TEM, HRTEM and HAADF images, and elemetal maps of Co and Te of $CoTe_2$ nanoplates synthesized using $Co(OAc)_2$. Undefined scale bars: 2 nm.

Fig. S12. (a) Photograph of NiTe $_2$ nanosheets powders produced by large-scale synthesis in a single batch. (b) XRD pattern of NiTe $_2$ nanosheets from scaled-up synthesis.

Fig. S13. XRD patterns of the transformation from MnO to $MnTe_2$ using Mn:Te ratio of 1:1.5. (b) TEM, HRTEM image, corresponding FFT pattern and elemental maps of Mn, O, and Te of MnO to MnTe₂ mixtures obtained at 45 min of the reaction. Undefined scale bars: 2 nm.

Fig. 14. (a) TEM image of the mixture of NiO_x and NiTe_{2-x} NCs at the initial stage for the synthesis of NiTe₂, (b) HRTEM image of NiO_x intermediates, (c) elemental maps of Ni, O, and Te for the mixture of NiO_x and NiTe_{2-x} NCs.

Fig. S15. XRD patterns aliquotes extracted from the synthesis of $CoTe_2$ nanoplates at different reaction times.

Fig. S16. M-T curve of FeTe₂.

Fig. S17. M-T curve of MnTe₂.

Fig. S18. M-T curve of (a) Ni_{0.75}Te and Ni_{0.64}Te, (b) Co_{0.83}Te.