SUPPORTING INFORMATION

High quality MAPbBr₃ films via pulsed laser deposition of single-crystalline targets

E. Ghavidel ^{1,2}, J. Barichello¹, A. Di Carlo ^{1,2}, A. Ishteev³, K. Konstantinova³, D. Saranin³, V. Campanari ¹, F. Martelli⁴, B. Paci ¹, A. Generosi ¹, M. Guaragno ¹, A. Cricenti¹, D. Becerrill¹, M. Luce¹, F. Matteocci², and A. Di Trolio ^{1,*}

- 1. CNR-Istituto di Struttura della Materia, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
- 2. CHOSE Dept. Electronic Engineering University of Rome Tor Vergata, via del Politecnico 1, 00133 Rome, Italy
- 3. LASE Laboratory of Advanced Solar Energy, NUST MISiS, 119049 Moscow, Russia
- 4. CNR- Istituto per la microelettronica e microsistemi, Via del Fosso del Cavaliere 100, 00133 Roma, Italy

Figure S1. AFM images: from the left images 30*30µm, 20*20 µm and 10*10 µm respectively.

Figure S2. XRD comparison of pristine MAPbBr₃ sample and after storage.

Figure S3. Temperature dependent crystallographic evolution of the PbBr₂ product.

Figure S4. XRD comparison of pristine-stored and post thermal treatment MAPbBr₃ sample.

Fig. S5. XPS spectrum of the single crystal target after some depositions. The spectra show the presence of $PbBr_2$ and $PbBr_3$ phases on the sample surface. Four peaks were used to fit the spectra corresponding to Pb 4f electrons of the $PbBr_2$ and $PbBr_3$ phase.

Table S1. Fitting parameters of Pb 4d spectra of the sample substrate (crystal) film including the peak
position, full width at half maximum (FWHM) and the relative contributions of Pb 5/2 and Pb 7/2. The
contribution is calculated taking both PbBr ₂ and PbBr ₃ phases.

		Pb 4f 5/2	Pb 4f 7/2
Center (eV)	PbBr ₂	142.7	137.9
Fwhm (eV)		1.1	1.1
Contribution (%)		20.8	29.3
Center (eV)	PbBr ₃	145.1	140.3
Fwhm (eV)		1.1	1.1
Contribution (%)		19.3	30.6

Figure S6. PL spectra at 12 K of thin (100 nm) and thick films grown from single crystal target.

Figure S7. PL spectra at 300K of a thin film grown from a single crystal target (brown line) and from a pellet sintered from pressed powders (blue). The green line represents the spectrum of the single crystal used as PLD target