Supporing Information

ZIF-derived carbon-coated Co₉S₈ for silicon anode with superior

performance in lithium-ion batteries

Xiaojie Sun, Ping Chen*, Xue Zhou, Ying Liu, Weixiao Dong

State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian

University of Technology, Dalian 116024, China

*Corresponding author.

E-mail address: chenping_898@126.com(P. Chen)

Fig. s1 XPS survey spectrum of Si@void@C@Co₉S₈@C

Fig. s2 cycling performance of Si@void@C@Co_S_8@C at 0.2A $g^{\text{-}1}$

Fig. s3 a,b SEM images of Si@void@C@Co₉S₈@C after 400cycles at 1.0A g^{-1}

Fig. s4 the contribution of pseudocapacitance at the scan rate of a 0.2mV s⁻¹, b 0.4mV s⁻¹, c 0.8mV s⁻¹, d 1.0mV s⁻¹

Anode	Current Density(A g ⁻¹)	Discharge Capacity(mAh g ⁻ ¹)	Cycle Number	Ref.
Si@void@C@Co ₉ S ₈ @C	1.0	658.1	500	this work
$Si@void@C@Co_9S_8@C$	0.2	713.1	40	this work
yolk-shell Si@void@C	0.05	628	100	[8]
porous Si-C	0.2	530	100	[9]
hollow core-shell Si@C	0.1	767	100	[11]
Co ₉ S ₈ /C	1.0	680	700	[12]
$Co_9S_8@C$	0.5	406.5	100	[13]
H-Co ₉ S ₈ +MWCNTs	0.3	511.3	50	[14]
CoSx/CP	0.5	562	300	[15]
Si@C@void@C	0.2	710	100	[25]
Co ₉ S ₈ /C-T	0.2	709	150	[54]

Table s1 Comparison of performance of other Si-C and Co_9S_8 materials for lithiumion batteries

Table s2 Kinetic parameters of Si@void@C@Co_S_8@C and Si@void@C $\,$

Sample		$Rs(\Omega)$	$Rct(\Omega)$	$\operatorname{Wo}(\Omega)$
Si@void@C@Co ₉ S ₈ @C	before	8.30	127.6	75.3
	after		147.9	619.5
Si@void@C	before		142	84.63
	after		179.8	420.6

References

- X. J. Xu, J. Liu, J. W. Liu, L. Z. Ouyang, R. Z. Hu, H. Wang, L. C. Yang and M. Zhu, *Adv. Funct. Mater.*, 2018, 28, 12.
- 2. X. J. Xu, F. K. Li, D. C. Zhang, Z. B. Liu, S. Y. Zuo, Z. Y. Zeng and J. Liu, *Adv. Sci.*, 2022, **9**, 11.
- 3. J. Liu, P. Kopold, P. A. van Aken, J. Maier and Y. Yu, *Angew. Chem.-Int. Edit.*, 2015, **127**, 9768-9772.
- 4. J. Liu, C. Wu, D. Xiao, P. Kopold, L. Gu, P. A. van Aken, J. Maier and Y. Yu, *Small*, 2016, **12**, 2354-2364.
- H. Mi, X. Yang, Y. Li, P. Zhang and L. Sun, *Chem. Eng. J.*, 2018, 351, 103-109.
- 6. L. Sun, Y. Liu, R. Shao, J. Wu, R. Jiang and Z. Jin, *Energy Storage Mater.*, 2022, **46**, 482-502.
- J. Xie, L. Sun, Y. Liu, X. Xi, R. Chen and Z. Jin, *Nano Res.*, 2022, 15, 395-400.
- S. J. Yeom, C. Lee, S. Kang, T.-U. Wi, C. Lee, S. Chae, J. Cho, D. O. Shin, J. Ryu and H.-W. Lee, *Nano Lett.*, 2019, 19, 8793-8800.
- 9. L. Sun, F. Wang, T. Su and H.-B. Du, *Dalton Transactions*, 2017, **46**, 11542-11546.
- L. Sun, J. Xie, S. Huang, Y. Liu, L. Zhang, J. Wu and Z. Jin, *Sci. China Mater.*, 2022, 65, 51-58.
- 11. L. Sun, X. Jiang and Z. Jin, Chem. Eng. J., 2023, 474, 145960.