Supporting Information

Concept of Triphenylamine Side Chains with Four Electroactive Nitrogen Centers toward Record-High Stable Electrochromic Polyamides

Yaw-Terng Chern,*^a Zhe-Yuan Zhang,^a Jane-Jen Wang,^b Pei-Ling Lin,^a and Yu-Cheng Chiu,^a Yu-Jie Wang,^c Chin-Hsuan Lin,^c and Guey-Sheng Liou*^c

^aDepartment of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
^bThe Department of Nursing, School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
^cInstitute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan

Email of the corresponding authors: ytchern@mail.ntust.edu.tw; gsliou@ntu.edu.tw.

List of Contents for Supplementary Information:

Table S1. Inherent Viscosity and Solubility of PAs. 3
Table S2. Thermal Properties of PAs. 4
Table S3. Optical and Electrochemical Data Collected for Coloration Efficiency
Table S4. Optical and Electrochemical Data Collected for Coloration Efficiency. 6
Table S5. Optical and Electrochemical Data Collected for Coloration Efficiency
Table S6. NIR Absorption of Polymers at the First Stage of Oxidation
Fig. S1 FT-IR spectra of the compounds 1 and 29
Fig. S2 FT-IR spectra of the compounds 3, 4, and PA 5b 10
Fig. S3 (a) ¹ H and (b) ¹³ C NMR spectra of compound 1. (d-solvent: pyridine-d5) 11
Fig. S4 (a) ¹ H and (b) ¹³ C NMR spectra of compound 2. (d-solvent: pyridine-d5)12
Fig. S5 ¹³ C NMR spectrum of compound 4. (d-solvent: pyridine-d5)13
Fig. S6 ESIMS spectrum of compound 114
Fig. S7 ESIMS spectrum of compound 2
Fig. S8 ESIMS spectrum of compound 4
Fig. S9 Thickness and surface morphology of PAs (a) 5a, (b) 5b, and (c) 5c 17
Fig. S10 ¹ H NMR spectra of PA 5b. (d-solvent: pyridine-d5)
Fig. S11 ¹ H NMR spectra of PA 5c. (d-solvent: pyridine-d5)
Fig. S12 TGA thermograms of PAs 5 at a heating rate of 20 °C min ⁻¹ from 50 to 800 °C 20
Fig. S13 DSC traces of PAs 5 at a heating rate of 20 °C min ⁻¹ from 50 to 350 °C21
Fig. S14 Potential step absorptometry and current consumption of PA 5a (in MeCN with 0.1 M
TBAP as the supporting electrolyte) by applying a potential step 0.0 V \leftrightarrow 0.5 V, and cycle time
20 sec
Fig. S15 Potential step absorptiometry during the continuous cycling test of PA 5a (in MeCN
with 0.1 M TBAP as the supporting electrolyte) by switching potentials step 0.00 V \leftrightarrow 0.50 V,
with a cycle time of 5 h and 5 min for coloring and bleaching processes, respectively
Fig. S16 Absorbance spectra of (a) P1 and (b) P2 thin-film electrode in 0.1 M TBAP/MeCN at
different applied potentials

РА	$\eta_{inh}(dL/g)^a$	NMP	DMAc	o-Chlorophenol	THF
5a	0.40	+	++	+	+
5b	0.32	+	+	+	—
5c	0.45	+	+	+	

Table S1. Inherent Viscosity and Solubility^b of PAs.

^aMeasured in NMP on 0.5 g/dL at 30 °C. ^bQualitative solubility was determined using 0.01 g of polymer in 1 ml of solvent. ++ (soluble at room temperature); + (soluble on heating at 60°C); +--- (partially soluble on heating at 60°C); --- (insoluble in hot solvent).

PA	$T_g (^{\circ}C)^a$	T _d (*	$T_d (^{\circ}C)^b$		
		In Air	In N ₂	- (%)	
5a	178	425	467	59	
5b	181	421	464	63	
5c	194	421	470	65	

Table S2. Thermal Properties of PAs.

^aTemperature at which the middle of the heat capacity change occurred from the second DSC heating scan at a heating rate of 20°C/min. ^bTemperature at which 10% weight loss recorded by thermogravimetry at a heating rate of 20°C/min. ^cResidual weight% at 800°C in nitrogen.

Cycles ^a	$ riangle OD^{b}$	$\Delta T(\%)^{c}$	Q(mC/cm ²) ^d	$\eta(cm^2/C)^e$	decay(%) ^f
1	0.376	57.9	1.84	204	0.00
2500	0.370	57.4	1.82	203	0.49
5000	0.363	56.6	1.79	202	0.98
7500	0.357	56.0	1.78	199	2.45
10000	0.355	55.8	1.78	199	2.45
12500	0.339	54.3	1.74	194	4.90
15000	0.337	54.0	1.73	194	4.90
17500	0.329	53.1	1.71	192	5.88
20000	0.323	52.4	1.69	191	6.37
22500	0.321	52.2	1.69	190	6.86
24000	0.307	50.7	1.64	186	8.82

 Table S3. Optical and Electrochemical Data Collected for Coloration Efficiency.

^aTimes of cyclic scan of **5a** by applying potential step: 0.0 V \leftrightarrow 0.5 V (V vs. Ag/AgCl). ^bOptical density change at 1404 nm. ^cOptical transmittance change at 1404 nm. ^dEjected charge determined from in situ experiments. ^eColoration efficiency is derived from the equation $\eta = \Delta OD/Q$. ^fDecay of coloration efficiency after cyclic scans.

Cycles ^a	$ riangle OD^{b}$	$\triangle T(\%)^c$	Q(mC/cm ²) ^d	$\eta(cm^2/C)^e$	decay(%) ^f
1	0.331	53.4	2.97	111	0.00
2000	0.315	51.6	2.87	110	0.90
4000	0.310	51.0	2.86	108	2.70
6000	0.307	50.7	2.84	108	2.70
8000	0.300	49.9	2.80	107	3.60
10000	0.283	48.0	2.76	103	7.20
12000	0.281	47.7	2.75	102	8.11
14000	0.281	47.6	2.75	102	8.11
16000	0.278	47.3	2.74	101	9.01
18000	0.276	47.1	2.73	101	9.01
20000	0.267	46.0	2.68	100	9.91

Table S4. Optical and Electrochemical Data Collected for Coloration Efficiency.

^aTimes of cyclic scan of **5a** by applying potential step: $0.0 V \leftrightarrow 0.5 V$ (V vs. Ag/AgCl). ^bOptical density change at 440 nm. ^cOptical transmittance change at 440 nm. ^dEjected charge determined from in situ experiments. ^eColoration efficiency is derived from the equation: $\eta = \triangle OD/Q$. ^fDecay of coloration efficiency after cyclic scans.

Cycles ^a	$ riangle OD^{b}$	$ riangle T(\%)^c$	Q(mC/cm ²) ^d	$\eta(cm^2/C)^e$	decay(%) ^f
1	1.05	91.1	7.22	145	0.00
500	1.03	90.7	7.20	144	0.69
1000	1.03	90.6	7.19	143	1.38
1500	1.02	90.4	7.17	142	2.07
2000	1.02	90.3	7.16	142	2.07
2500	1.00	90.0	7.14	140	3.45
3000	0.96	89.0	7.08	136	6.21
3500	0.95	88.7	7.06	134	7.59
4000	0.93	88.1	6.91	134	7.59
4500	0.92	88.1	6.91	134	7.59
5000	0.83	85.2	6.42	129	11.03

Table S5. Optical and Electrochemical Data Collected for Coloration Efficiency.

^aTimes of cyclic scan of **5a** by applying potential step: 0.0 V \leftrightarrow 0.7 V(V vs. Ag/AgCl). ^bOptical density change at 1404 nm. ^cOptical transmittance change at 1404 nm. ^dEjected charge, determined from in situ experiments. ^eColoration efficiency is derived from the equation: $\eta = \triangle$ OD/Q. ^fDecay of coloration efficiency after cyclic scans.

Polymer	Potential ^a (V)	$\lambda_{\max}^{b}(nm)$	Absorption Range ^b (nm)
5a	0.50	1404	800-1800
P1	0.75	1062	800-1450
P2	0.40	1252	800-1700

Table S6. NIR Absorption of Polymers at the First Stage of Oxidation.

^aApplied potential for the first stage oxidation. ^bNIR absorption.

Fig. S1 FT-IR spectra of the compounds 1 and 2.

Fig. S2 FT-IR spectra of the compounds 3, 4, and PA 5b.

Fig. S3 (a) ¹H and (b) ¹³C NMR spectra of compound 1. (d-solvent: Pyridine-d₅)

(a)

Fig. S4 (a) ¹H and (b) ¹³C NMR spectra of compound 2. (d-solvent: Pyridine-d₅)

Fig. S5 ¹³C NMR spectrum of compound 4. (d-solvent: Pyridine-d₅)

Fig. S6 ESIMS spectrum of compound 1.

Fig. S7 ESIMS spectrum of compound 2.

Fig. S8 ESIMS spectrum of compound 4.

Fig. S9 Thickness and surface morphology of PAs (a) 5a, (b) 5b, and (c) 5c.

Fig. S11 ¹H NMR spectra of PA 5c. (d-solvent: Pyridine-d₅)

Fig. S12 TGA thermograms of PAs 5 at a heating rate of 20 °C min⁻¹ from 50 to 800 °C.

Fig. S14 Potential step absorptometry and current consumption of PA **5a** (in MeCN with 0.1 M TBAP as the supporting electrolyte) by applying a potential step $0.0 \text{ V} \leftrightarrow 0.5 \text{ V}$, and cycle time 20 sec.

Fig. S15 Potential step absorptiometry during the continuous cycling test of PA 5a (in MeCN with 0.1 M TBAP as the supporting electrolyte) by switching potentials step 0.00 V \leftrightarrow 0.50 V, with a cycle time of 5 h and 5 min for coloring and bleaching processes, respectively.

Fig. S16 Absorbance spectra of (a) **P1** and (b) **P2** thin-film electrode in 0.1 M TBAP/MeCN at different applied potentials.