Supporting information

Rare-earth UiO-66 for temperature sensing near room temperature

Elias Djanffar,^{+a} Hudson A. Bicalho,^{+bc} Zvart Ajoyan,^{bc} Ashlee J. Howarth^{*bc} and Hélène Serier-Brault^{*a}

a. Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, F-44000 Nantes, France.

b. Department of Chemistry and Biochemistry and Centre of NanoScience Research, Concordia University, 7141 Sherbrooke Street West, Montréal, Quebec H4B 1R6, Canada.
E-mail: ashlee.howarth@concordia.ca

c. FRQNT Quebec Centre for Advanced Materials (QCAM/CQMF), Montreal, Canada

E-mail : helene.brault@cnrs-imn.fr

Figure S1. Scanning electron microscopy (SEM) image and elemental mapping of Tb and Eu for $Tb_{5.94}Eu_{0.06}$ -UiO-66.

Figure S2. Scanning electron microscopy (SEM) image and elemental mapping of Tb and Eu for $Tb_{5.82}Eu_{0.18}$ -UiO-66.

Figure S3. Scanning electron microscopy (SEM) image and elemental mapping of Tb and Eu for $Tb_{5.58}Eu_{0.42}$ -UiO-66.

Theoretical composition	EDS composition	ICP composition	
Tb _{5.94} Eu _{0.06} -UiO-66	98.86% (Tb) and 1.14% (Eu)	99.06 ± 0.12% (Tb) and 0.94	
	Tb _{5.94} Eu _{0.07}	± 0.12% (Eu)	
Tb _{5.82} Eu _{0.18} -UiO-66	97.09% (Tb) and 2.91% (Eu)	97.43 ± 0.04% (Tb) and	
	Tb _{5.82} Eu _{0.18}	2.57 ± 0.04% (Eu)	
Tb _{5.58} Eu _{0.42} -UiO-66	93.03% (Tb) and 6.97%(Eu)	93.99 ± 0.14% (Tb) and 6.01	
	Tb _{5.58} Eu _{0.42}	± 0.14% (Eu)	

Table S1: EDS and ICP composition of the compounds $\mathbf{Tb}_{\text{6-x}}\mathbf{Eu}_{x}\text{-UiO-66}.$

Table S2. Chromaticity coordinates of compounds $Tb_{6-x}Eu_x$ -UiO-66 excited at 296 nm.

Compound	(x;y) coordinates		
Tb-UiO-66	(0.358 ; 0.582)		
Tb _{5.94} Eu _{0.06} -UiO-66	(0.360 ; 0.559)		
Tb _{5.82} Eu _{0.18} -UiO-66	(0.399 ; 0.536)		
Tb _{5.58} Eu _{0.42} -UiO-66	(0.465 ; 0.498)		

Figure S4. Room temperature excitation spectra of monitoring at 614 nm (${}^{5}D_{0} \approx {}^{7}F_{2}$ transition of Eu $^{3+}$, red line) and at 544 nm (${}^{5}D_{4} \approx {}^{7}F_{5}$ transition of Tb $^{3+}$, green line) of **Tb**_{6-x}**Eu**_x-**UiO-66** materials.

Table S3. Room temperature lifetimes of ${}^{5}D_{4}$ (Tb³⁺) and ${}^{5}D_{0}$ (Eu³⁺) obtained from the decay curve fitting with a single exponential model.

Compound	5D₄ (µs)	5D₀ (µs)	
Tb-UiO-66	1212 ± 9	##	
Tb _{5.94} Eu _{0.06} -UiO-66	1850 ± 40	1516 ± 2	
Tb _{5.82} Eu _{0.18} -UiO-66	1540 ± 20	1850 ± 10	
Tb _{5.58} Eu _{0.42} -UiO-66	1520 ± 20	1303 ± 2	

Figure S5. a) Decay curves of the ${}^{5}D_{4} \not> {}^{7}F_{5}$ transition of Tb³⁺ in **Tb**_{5.94}**Eu**_{0.06}-**UiO-66** (red line), **Tb**_{5.82}**Eu**_{0.18}-**UiO-66** (green line), and **Tb**_{5.58}**Eu**_{0.42}-**UiO-66** (blue line), b) Decay curves of the ${}^{5}D_{0} \not> {}^{7}F_{2}$ transition of Eu³⁺ in **Tb**_{5.94}**Eu**_{0.06}-**UiO-66** (red line), **Tb**_{5.82}**Eu**_{0.18}-**UiO-66** (green line), and **Tb**_{5.58}**Eu**_{0.42}-**UiO-66** (blue line)

Figure S6. a) Temperature-dependent emission spectra in the 255-295 K range of $Tb_{5.82}Eu_{0.18}$ -UiO-66 upon 296 nm excitation. b) Corresponding dependence of the normalized integrated areas of I_{Tb} (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$) and I_{Eu} (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$). c) Temperature dependence of the thermometric parameter $\Delta = I_{Tb}/I_{Eu}$, and d) Relative thermal sensitivity for the mixed compound.

Figure S7. a) Temperature-dependent emission spectra in the 255-295 K range of $Tb_{5.58}Eu_{0.42}$ -UiO-66 upon 296 nm excitation. b) Corresponding dependence of the normalized integrated areas of I_{Tb} (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$) and I_{Eu} (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$). c) Temperature dependence of the thermometric parameter $\Delta = I_{Tb}/I_{Eu}$, and d) Relative thermal sensitivity for the mixed compound.

Figure S8. Thermal evolution of CIE chromaticity diagram of the **Tb**_{5.94}**Eu**_{0.06}**UiO-66** samples calculated from emission spectra between 255 and 295 K.

Table S4. Fitting parameters (A, B, C, and D) of calibrations curves $\Delta = f(T)$ according the following mathematical model :

	Α	В	С	D	R ²
Tb _{5.94} Eu _{0.06} -UiO-66	239 ± 148	-2.9 ± 1.6	0.012 ± 0.006	-1.6.10 ⁻⁵ ± 0.7. 10 ⁻⁵	0.997
Tb _{5.82} Eu _{0.18} -UiO-66	235 ± 64	-2.7 ± 0.6	0.010 ± 0.002	$-1.4.10^{-5} \pm 0.3.10^{-5}$	0.993
Tb _{5.58} Eu _{0.42} -UiO-66	60 ± 27	-0.6 ± 0.3	0.002 ± 0.001	-2.10 ⁻⁶ ± 1.10 ⁻⁶	0.999

$$\Delta = \mathbf{A} + \mathbf{B}\mathbf{T} + \mathbf{C}\mathbf{T}^2 + \mathbf{D}\mathbf{T}^3$$

Figure S9: Temperature cycling between 255 and 295 K revealing a repeatability > 95% for the $Tb_{5.94}Eu_{0.06}$ -UiO-66 compound.