Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Electronic Supporting Information (ESI) for:

Layered methylhydrazinium lead halide perovskites: new crystal polymorphs with tailored band gap and photoluminescence emission colour via halide substitution

Authors: Dawid Drozdowski,*,ª Adam Kabański,ª Dagmara Stefańska,ª Maciej Ptak,ª

Mirosław Mączka^a and Anna Gągor*,^a

^aInstitute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wrocław, Poland

* - Corresponding Authors; e-mails: d.drozdowski@intibs.pl, a.gagor@intibs.pl

Figure S1. Comparison of the iodine contribution (x) calculated via elemental analysis (Scanning Electron Microscope with Energy Dispersive Spectrometer – SEM-EDS) and refined based on singlecrystal X-ray diffraction data (site occupancy factors of halides refined as free parameters).

Figure S2. Powder X-ray diffraction patterns for MHy₂PbBr_{4-x}I_x at 295 K testifying phase purity.

Figure S3. (a) The comparison of PXRD patterns for MHyPbBr_{3.7}I_{0.3} (as-synthesized sample and stored *ca*. 2.5 years in a desiccator, RT) and (b) patterns for MHyPbBr_{1.65}I_{2.35} (stored *ca*. 2.5 years in a desiccator, RT).

Figure S4. Raman spectra of polycrystalline MHy₂PbBr_{4-x}I_x samples.

Figure S5. The x1-x4 sections through Pb and three inequivalent X atoms (X = Br, I) in $MHy_2PbBr_{0.9}I_{3.1}$ in modulated phase **VI**. Upper part: observed Fourier maps with contour step of 20 eÅ⁻³ for Pb and 5 eÅ⁻³ for X. Lower part: difference maps with the contour step of 0.5 eÅ⁻³ for all atoms. The dashed lines represent negative densities.

Figure S6. The x1-x4 sections through the atoms of MHy⁺ in MHy₂PbBr_{0.9}I_{3.1} in modulated phase **VI**. Upper part: observed Fourier maps with contour step of 1 $e^{A^{-3}}$ for all atoms. Lower part: difference maps with the contour step of 0.5 $e^{A^{-3}}$ for all atoms. The dashed lines represent negative densities.

Figure S7. Reciprocal space reconstruction of the (a-d) *h*0*l* layer in particular phases: (a, b, c) *Pnmm*, *Pnma* and $P2_1/c$ (**II**, **III** and **IV**, respectively), (d) $P\overline{1}$ (**V**). (e-f) To apply the systematic extinctions rule for satellite reflections in modulated phase, four integers *hklm* (ha* + kb* + lc* + mq) are provided to index all peaks. For (e) *h*0*lm* layer, the 1st order satellite reflections (m = 1) do not appear, while for (f) *h*1*lm* layer are visible. According to the *International Tables for Crystallography Volume C* (Janssen *et al.*, 2006) this rule applies to an intrinsic shift s along the [010] direction. Therefore, the (3+1)-dimensional superspace group is *Pnma*(00 γ)0s0 (**VI**).

Figure S8. Crystal structure of $MHy_2PbBr_{3.7}I_{0.3}$ (1st region) in **II** at 380 K. (a) Individual octahedra with three independent halides. View along (b) [100], (c) [010] and (d) [001] direction. Dashed lines in (b) represent possible hydrogen bonding (HBs) interactions.

Figure S9. Crystal structure of $MHy_2PbBr_{3.7}I_{0.3}$ (1st region) in **III** at 295 K. (a) Individual octahedra with three independent halides. View along (b) [100], (c) [010] and (d) [001] direction. Dashed lines in (b) represent possible HBs.

Figure S10. Crystal structure of $MHy_2PbBr_{3.7}I_{0.3}$ (1st region) in **IV** at 100 K. (a) Two $[PbX_6]^{4-}$ octahedra in the assymetric unit. View along (b) [001], (c) [010] and (d) [100] direction. Dashed lines in (b) represent possible HBs.

Figure S11. Crystal structure of $MHy_2PbBr_{2.9}I_{1.1}$ (2nd region) in V at 100 K. (a) Four $[PbX_6]^{4-}$ octahedra in the assymetric unit. View along (b) [100], (c) [010] and (d) [001] direction. Dashed lines in (b) represent possible HBs.

Figure S12. (a) Reciprocal space reconstruction and (b) crystal structure of MHy₂PbBr_{1.5}I_{2.5} in $Pm\overline{3}m$ (I) at 350 K. Measured after pre-heating to 370 K.

Figure S13. (a-c) Experimental powder XRD diffractograms of MHy₂PbBr_{3.7}I_{0.3} (a) at RT (*Pnma*, **III**), (b) at RT after heating at 375 K (**III**), (c) at RT after heating at 420 K (*Pm* $\overline{3}m$, **I**). (d) Theoretical diffractogram for phase **I** with *a* = 5.992(3) Å.

Figure S14. Snapshots of the modulation in phase **VI** in $MHy_2PbBr_{0.9}I_{3.1}$ at 295 K for *t* values equal to (a) 0, (b) 0.2, (c) 0.4, (d) 0.6, (e) 0.8 and (f) 1.0 Dashed lines represent coordinates of X1 (green) and X3 (red) in the averaged structure.

Figure S15. Octahedra angle variance σ^2 of MHy₂PbBr_{0.9}I_{3.1} in modulated phase (**VI**) at 295 K versus *t*, compared with single halide analogues – MHy₂PbBr₄ (*Pmn*2₁, 300 K) and MHy₂PbI₄ (*Pmmn*, 305 K).

Figure S16. Octahedra distortion parameters of $MHy_2PbBr_{4-x}I_x$ versus iodine concentration (*x*): (a) bond length distortion (Δ_d) and (b) octahedra angle variance (σ^2). Values for the samples in the 3rd region are provided for the averaged structure of **VI**.

Figure S17. Dependences of FWHMs of selected Raman bands as a function of temperature for the MHy₂PbBr_{3.7}I_{0.3} sample.

Figure S18. (a) Room temperature absorption spectra and (b) position of the maximum of the excitonic absorption band consolidated with the 2^{nd} -order polynomial fitting (red curve) of the investigated samples of MHy₂PbBr_{4-x}I_x.

Figure S19. The energy of band gaps determined with Tauc plots for investigated materials of $MHy_2PbBr_{4-x}I_x$. The composition of the individual material is presented in the plot. The insets represent the actual samples, placed on a graph paper (1 grid = 1 mm).

Figure S20. The influence of temperature on normalized integrated PL intensities.

Table S1. Experimental and refinement details of $MHy_2PbBr_{3.7}I_{0.3}$ ($M_r = 635.08$).

	Phase II	Phase III	Phase IV				
Crystal data							
Crystal system, space group	Orthorhombic, Pnmm	Orthorhombic, Pnma	Monoclinic, $P2_1/c$				
Temperature (K)	380	295	100				
<i>a</i> , <i>b</i> , <i>c</i> (Å)	6.097(3), 18.194(3), 6.063(5)	12.205(4), 17.858(5), 6.054(3)	12.120(4), 17.609(5), 12.099(3)				
β (°)	90, 90, 90	90, 90, 90	90, 92.52(3), 90				
$V(Å^3)$	672.5(7)	1319.7(9)	2579.6(13)				
Ζ	2	4	8				
μ (mm ⁻¹)	24.18	24.68	25.25				
Crystal size (mm)	$0.16 \times 0.12 \times 0.03$	$0.16 \times 0.12 \times 0.03$	0.16 imes 0.12 imes 0.03				
Data collection		·					
T_{\min}, T_{\max}	0.109, 1.000	0.240, 1.000	0.240, 1.000				
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	14587, 735, 702	20001, 1394, 940	8313, 8313, 4120				
$R_{ m int}$	0.044	0.042	-				
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.609	0.625	0.610				
Refinement							
$R[F^2 > 2\sigma(F^2)],$ wR(F^2), S	0.034, 0.097, 1.24	0.026, 0.069, 1.05	0.048, 0.126, 0.89				
No. of reflections	735	1394	8313				
No. of parameters	40	60	160				
No. of restraints	0	2	1				
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.62, -1.35	0.63, -0.86	2.86, -2.67				

	Phase III	Phase V					
Crystal data							
Crystal system, space group	Orthorhombic, Pnma	Triclinic, P-1					
Temperature (K)	295	100					
<i>a</i> , <i>b</i> , <i>c</i> (Å)	12.391(4), 17.892(5), 6.166(3)	12.318(4), 17.655(5), 12.297(4)					
β (°)	90, 90, 90	90.04(3), 88.85(3), 89.98(3)					
$V(Å^3)$	1366.9(9)	2673.6(14)					
Ζ	4	8					
μ (mm ⁻¹)	23.27	23.92					
Crystal size (mm)	0.28 imes 0.18 imes 0.07	0.28 imes 0.18 imes 0.07					
Data collection	1						
T_{\min}, T_{\max}	0.346, 1.000	0.159, 1.000					
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	8147, 1444, 846	11196, 11196, 5598					
R _{int}	0.040	-					
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.625	0.610					
Refinement		·					
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.032, 0.073, 1.03	0.107, 0.314, 1.01					
No. of reflections	1444	11196					
No. of parameters	61	318					
No. of restraints	2	85					
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e}{ m \AA}^{-3})$	0.86, -1.52	12.55, -5.90					

Table S2. Experimental and refinement details of $MHy_2PbBr_{2.9}I_{1.1}$ ($M_r = 672.68$).

Table S3. Experimental and refinement details of compounds crystallizing in modulated phase (**VI**): $MHy_2PbBr_{1.65}I_{2.35}$ ($M_r = 731.43$), $MHy_2PbBr_{1.5}I_{2.5}$ ($M_r = 738.48$), $MHy_2PbBr_{0.9}I_{3.1}$ ($M_r = 766.68$) and for $MHy_2PbBr_{1.5}I_{2.5}$ in phase **I**. For the first two compounds values are provided for averaged structures.

	MHy2PbBr1.65I2.35	Hy2PbBr1.65I2.35 MHy2PbBr1.5I2.5 MHy2PbBr6		MHy ₂ PbBr _{1.5} I _{2.5}		
Crystal data						
Crystal system, space group	Orthorhombic, Pnma	Cubic, Pm-3m				
Modulation vector, q	0.456 c*	-				
Temperature (K)	295	·	·	350		
<i>a</i> , <i>b</i> , <i>c</i> (Å)	12.600(4), 18.024(5), 6.303(3)	12.642(4), 18.070(5), 6.330(3)	12.710(4), 18.271(5), 6.363(3)	6.270(3)		
$V(Å^3)$	1431.5(9)	1319.7(9)	1477.7(9)	246.4(4)		
Ζ	4	·	·	1		
μ (mm ⁻¹)	21.50	21.18	20.30	26.43		
Crystal size (mm)	0.2 imes 0.08 imes 0.03	$0.25 \times 0.13 \times 0.03$	$0.3 \times 0.14 \times 0.07$	$0.25 \times 0.13 \times 0.03$		
Data collection		·	·			
T_{\min}, T_{\max}	0.294, 1.000	0.187, 1.000	0.473, 1.000	0.418, 1.000		
No. of measured, independent and observed reflections	27011, 1509, 1101	54228, 1523, 1111	183735, 5912, 2458	551, 76, 63		
R _{int}	0.038	0.049	0.060	0.053		
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.624	0.625	0.695	0.623		
Refinement		·	·	·		
$R[F^2 > 2\sigma(F^2)],$ wR(F ²), S (all)	0.041, 0.124, 1.10	0.047, 0.146, 1.13	0.059, 0.222, 2.32	0.050, 0.123, 1.08		
$R[F^2 > 2\sigma(F^2)],$ wR(F ²) (main)	-	-	0.039, 0.124	-		
$R[F^2 > 2\sigma(F^2)],$ wR(F ²) (satellites)	-	-	0.128, 0.286	-		
No. of reflections	1509	1523	5912	76		
No. of parameters	48	48	58	8		
No. of restraints	4	4	2	-		
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e}{ m \AA}^{-3})$	2.42, -2.86	2.89, -3.25	1.93, -2.02	0.83, -0.54		

D—H···A	D—H (Å) H···A (Å)		$D \cdots A$ (Å)	D—H···A (°)				
Phase III, 295 K								
N3A—H3AA…Br3 ⁱ	0.89	2.61	3.316 (11)	136.7				
N3A—H3AB…Br3	0.89	2.76	3.534 (15)	146.0				
N2A—H2AA…Br3 ⁱⁱ	0.89	2.63	3.289 (9)	131.4				
N2A—H2AB…N3A ⁱⁱⁱ	0.89	2.23	3.110 (17)	170.9				
N2—H2A…Br1 ⁱⁱ	0.89	2.82	3.41 (3)	125.1				
N2—H2B···Br3 ⁱⁱ	0.89	2.73	3.531 (17)	150.7				
N3—H3A…N3 ⁱⁱⁱ	0.90	2.56	3.335 (19)	144.4				
N3—H3B…N3 ^{iv}	0.90	2.49	3.335 (19)	157.1				
Phase IV, 100 K								
N6—H6A…Br1 ^v	0.92	2.91	3.736 (17)	150.4				
N6—H6B…Br8 ^{vi}	0.93	2.58	3.497 (17)	169.9				
N8—H8A····Br3 ⁱ	0.89	2.86	3.501 (15)	129.6				
N8—H8B…Br7	0.89	2.68	3.451 (16)	146.1				
N4—H4D \cdots Br7 ⁱ	0.91	2.72	3.530 (16)	149.4				
N4—H4E…N6	0.91	2.26	3.13 (2)	159.5				
N3—H3D···Br7	0.91	2.50	3.357 (15)	157.6				
N3—H3E····Br3	0.91	2.47	3.292 (16)	151.0				
N1—H1A…N4	0.91	1.98	2.890 (19)	177.9				
N1—H1B····Br5 ^v	0.91	2.73	3.514 (17)	144.6				
N1—H1B····Br8 ^v	IB···Br8 ^v 0.91		3.407 (14)	114.6				
N5—H5A…Br7	0.91	2.56	3.325 (17)	142.5				
N5—H5A…N8	0.91	2.57	3.21 (2)	127.9				
N5—H5B···Br4 ^v	0.91	2.45	3.321 (16)	161.5				
N7—H7A…N2 ^{vii}	0.91	2.14	3.04 (2)	168.9				
N7—H7B…Br2 ^{vii}	0.91	2.89	3.549 (17)	130.6				
N7—H7B…Br3 ^{vii}	0.91	2.85	3.396 (14)	120.0				
N2—H2D····Br4 ^{vi}	0.88	2.74	3.409 (16)	133.4				
N2—H2E····Br4 ^{viii}	0.88	2.53	3.395 (15)	165.2				

Table S4. Selected hydrogen-bond parameters of MHy₂PbBr_{3.7}I_{0.3}.

Symmetry code(s): (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*+1/2, -*y*+1, *z*+1/2; (iv) -*x*+1/2, -*y*+1, *z*-1/2; (v) -*x*+1, *y*+1/2, -*z*+1/2; (vi) *x*, -*y*+1/2, *z*+1/2; (vii) *x*+1, *y*, *z*; (viii) -*x*, *y*+1/2, -*z*+1/2.

D—H···A	<i>D</i> —H (Å)	H…A (Å)	<i>D</i> …A (Å)	D—H···A (°)			
Phase III, 295 K							
N3A—H3AA…Br3 ⁱ	0.90	2.66	3.329 (12)	132.0			
N3A—H3AB…Br3	0.90	2.77	3.604 (18)	154.4			
N2A—H2AA…Br3 ⁱⁱ	0.89	2.61	3.309 (11)	136.2			
N2A—H2AB…N3A ⁱⁱⁱ	0.89	2.24	3.105 (18)	165.7			
N3—H3B····Br3 ^{iv}	0.89	2.78	3.62 (3)	159.8			
N2—H2A…Br1 ⁱⁱ	0.89	2.82	3.43 (3)	127.2			
N2—H2B····Br3 ⁱⁱ	0.89	2.71	3.52 (2)	151.7			
Phase V, 100 K							
N24—H24A····Br9 ⁱⁱ	0.90 2.74		3.52 (3)	144.3			
N24—H24B…Br15	0.91	2.65	3.44 (4)	145.3			
N11—H11A…Br16	0.91	2.63	3.46 (4)	151.3			
N11—H11B…Br10	0.91	2.49	3.38 (4)	164.5			
N6—H6A…N8 ^v	0.90	2.49	3.24 (5)	141.7			
N6—H6B…Br10	0.90	2.76	3.58 (4)	152.5			
N15—H15B…Br4 ^{vi}	0.90	2.73	3.52 (4)	147.2			
N8—H8A…Br10 ^v	0.91	2.79	3.46 (4)	130.9			
N8—H8A…N6 ^v	0.91	2.53	3.24 (5)	135.2			
N8—H8B…Br12	0.91	2.47	3.33 (4)	159.0			
N23—H23A····Br9	0.91	2.82	3.35 (3)	118.5			
N23—H23B…N21 ⁱⁱ	0.91	2.14	3.05 (6)	176.0			
$N18$ — $H18A$ ··· $N15^{i}$	0.89	2.32	3.15 (6)	155.5			
N18—H18B…Br15 ⁱⁱ	0.89	2.62	3.51 (5)	172.0			
N17—H17A…Br15 ^{vii}	0.91	2.44	3.32 (3)	162.8			
N17—H17B…Br9	0.91	2.77	3.57 (5)	147.3			
N2—H2A…N12 ^v	0.91	2.10	3.00 (6)	172.6			
N2—H2B···Br3	0.91	2.74	3.58 (4)	155.0			
N9—H9A…Br13 ^{viii}	0.90	2.58	3.48 (4)	170.5			
N5—H5A…Br16 ^{vii}	0.91	2.91	3.42 (3)	116.6			
N5—H5B…N3 ^{ix}	0.91	2.20	3.10 (5)	169.7			
N20—H20A…N18 ⁱⁱ	0.91	2.03	2.93 (6)	174.1			
N20—H20B…Br17	0.91	2.78	3.60 (4)	150.1			
N12—H12A…N9 ^v	0.92	2.40	3.29 (6)	163.9			
N12—H12B···Br10 ^v	0.92	2.62	3.52 (3)	166.6			
N14—H14A…Br15 ⁱⁱ	0.91	2.73	3.43 (4)	134.9			
N14—H14A…N24 ⁱⁱ	0.91	2.37	3.10 (5)	137.0			
N14—H14B…Br1	0.91	2.51	3.38 (4)	161.5			
N21—H21A····Br1	0.91	2.52	3.42 (5)	170.1			
N21—H21B····Br1 ^{vi}	··Br1 ^{vi} 0.90 2.69		3.41 (4)	138.3			

Table S5. Selected hydrogen-bond parameters of MHy₂PbBr_{2.9}I_{1.1}.

Symmetry code(s): (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) -x+1/2, -y+1, z+1/2; (iv) x-1/2, y, -z+1/2; (v) -x+1, -y, -z+1; (vi) -x, -y+1, -z+1; (vii) x, y, z-1; (viii) -x, -y, -z+1; (ix) -x+1, -y, -z.

4	3.1	2.5	2.35	1.1	0.4	0.3	0.25	0	Assignment
3270_{vw}					3283_{vw}		3278_{vw}	3279_{vw}	$\nu_{as}NH_2$
3235_{w}	3240_w	3243_{w}	$3238_{\rm w}$	3244_w	3247_{w}	3248_w	3246_w	$3247_{\rm w}$	$\nu_s NH_2$
$3163_{\rm w}$	3160_w	3165_{w}	3159_{w}	3162_w	3164_{w}	3166_w	3168_w	$3167_{\rm w}$	$\nu_{as} N H_2{}^+$
$3078_{\rm w}$			3079_{w}	$3085_{\rm w}$	$3090_{\rm w}$	$3091_{\rm w}$	$3089_{\rm w}$	$3087_{\rm w}$	$\nu_s NH_2^+$
$3025_{\rm w}$	3025 _w	$3025_{\rm w}$	$3026_{\rm w}$	$3028_{\rm w}$	3036 _w , 3028 _w	3036 _w , 3029 _w	3036 _w , 3029 _w	3038 _w , 3029 _w	vasCH3
2948s	2953s	2951s	2952s	2954s	2957s	2956s	2955s	2955s	vsCH3
2876 _{vw} ,	2883 _{vw} ,	2882 _{vw} ,	2878 _{vw} ,	2880 _{vw} ,	2881 _{vw} ,	2880 _{vw} ,	2880 _{vw} ,	2880 _{vw} ,	attantan
$2805_{\rm w}$	$2808_{\rm w}$	2806w	$2807_{\rm w}$	2809_{w}	2809_{w}	2809_{w}	2809_{w}	2809_{w}	overtone
1607_{w}	$1601_{\rm w}$	1602_{w}	1611_w	1609_w	1615_w	1617_{vw}	1614_{w}	$1615_{\rm w}$	δNH_2
1568m	1572m	1571m	1575m	1577m	1579m	1584m	1579m	1580m	$\delta \mathrm{NH_{2}^{+}}$
1446 _s	1445 _s	1446 _s	1448_s	1448_s	1451 _s	1452 _s	1450_s	1451 _s	$\delta_{as}CH_3$
1411_w	1417_{w}	$1414_{\rm w}$	$1414_{\rm w}$	1415_w	$1415_{\rm w}$	1417_{vw}	1416_w	$1414_{\rm w}$	$\delta_s CH_3$
1357 _m	1364 _m	1363 _m	1364 _m	1367 _m	1365 _m	1374_{w}	1365 _m	1361 _m	ωNH_2^+
1322m	1313m	1319m	1328m	1326m	1325m	1327m	1324m	1321m	$ au \mathrm{NH_{2}^{+}}$
1196_w	1197_{w}	1198_w	1198_w	1200_w	1201_{w}	1203_w	1201_{w}	1202_w	ρCH ₃ +ωNH ₂
1135m	1135m	1136m	1139m	1139m	1140m	1140m	1140m	1139m	$\tau NH_2^+ + \rho CH_3$
$1090_{\rm w}$	1090_w	1094_{w}	1096_w	1097_{w}	1098_w	1099m	1098_w	1098_w	$\rho CH_3 + \tau NH_2^+$
976_w	971_{w}	$976_{\rm w}$	$984_{\rm w}$	$985_{\rm w}$	$989_{\rm w}$	$985_{\rm w}$	$989_{\rm w}$	$989_{\rm w}$	vasCNN
882s	880s	883s	887_{s}	888s	891s	894s	891s	892s	vsCNN
856_{sh}	866_{sh}	868_{sh}	871_{sh}	872_{sh}	872_{sh}	872_{sh}	873 _m	872_{sh}	$ ho NH_2^+$
441 _w	$439_{\rm w}$	441 _w	446_w	$444_{\rm w}$	$449_{\rm w}$	451 _w	$448_{\rm w}$	$450_{\rm w}$	δCNN
331w		347_{w}	$340_{\rm w}$	349_{w}	347_{w}	$342_{\rm w}$		346_w	τNH_2
225_{vw}		241_{vw}	255_{vw}	259_{vw}	295_{vw}	285_{vw}	295_{vw}	295_{vw}	τCH ₃
122s	107s	129s	107s	116s	122s	119s	121s	123s	vPbBr+T'+L
	58_{vs}		57_{vs}	58_{vs}	57_{vs}		57_{vs}	56_{vs}	δPbBr

Table S6. Raman wavenumbers for polycrystalline MHy₂PbBr_{4-x}I_x samples, together with band assignments.^a

^akey: δ , bending; ρ , rocking; ν , stretching; τ , twisting; ω , wagging; T', MHy⁺ translation; L, MHy⁺ vibration; vs, very strong; s, strong or symmetric; m, medium; w, weak; vw, very weak; as, antisymmetric.