Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

New Ultrafast Scintillators with Core Valence Luminescence: Cs₂MgCl₄ and Cs₃MgCl₅

Daniel Rutstrom, *ab Luis Stand, ac Dylan Windsor, b Haixuan Xu, b Maciej Kapusta, d Charles L. Melcher, ac Mariya Zhuravlevaab

^a Scintillation Materials Research Center, University of Tennessee, Knoxville, TN 37996, USA.

^b Department of Materials Science and Engineering, University of Tennessee Knoxville, Knoxville, Tennessee, USA.

^c Department of Nuclear Engineering, University of Tennessee Knoxville, Knoxville, Tennessee, USA.

^d Siemens Medical Solutions, Rockford, Tennessee, USA

Figure S1. Scintillation decay time profiles measured over a longer time window.

Figure S2. (left) Photograph of a Cs_2MgCl_4 sample used to test stability of light yield measurements in air. (right) Resulting pulse height spectra measured with the fresh sample versus after 18 hours of exposure.