Supporting information for

Substrate Effects on Structural and Optoelectronic Properties of Quasi-2D Perovskite Films

Chenyu Hu[†], Zhenmei He[†], Shuochen Wang[‡], Lixuan Kan[†], Sanfeng Lei[†], Xixiang Zhu[†], Jinpeng Li[†], Kai Wang[†], and Haomiao Yu^{*,†}

[†]Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China

[‡]The High School Affiliated to Renmin University of China, Beijing 100080, China

Corresponding Author

Haomiao Yu* yuhaomiao@bjtu.edu.cn

Experimental section

Materials: PEN substrates were purchased from Peccell Technologies, Inc., PDMS substrates were purchased from Dow Corning Corp. Methylammonium iodide (MAI) and lead iodide (PbI₂) were purchased from Xi'an Polymer Light Technology Corp, 2-phenylethylamine hydroiodide (PEAI) was purchased from Liaoning Preferred New Energy Technology Corp. The organic solvents include dimethyl sulfoxide (DMSO, 99.9%), chlorobenzene (CB, 99.9%) were purchased from Sigma Aldrich. All reagents and chemicals were used as received without further purification.

Perovskite precursor solutions: 0.8 mmol of PbI_2 , 0.6 mmol of MAI, 0.4 mmol of PEAI were dissolved in 1.2 ml of a mixed solution of DMF and DMSO (9:1 volume ratio). The prepared quasi 2D perovskite precursor solution was stirred at 50°C for 12 hours. Care was taken to store it away from light using a brown bottle. Prior to spin-coating, the solution was filtered through a 0.22 µm polytetrafluoroethylene (PTFE) needle filter tip into a clear white bottle to obtain a clear, yellow solution of the perovskite precursor.

Sample preparation and device fabrication: Silicon, glass, PEN, and PDMS substrates were first meticulously cleaned through ultrasonic washing in distilled water, isopropanol, and ethanol, followed by treatment with UV-ozone plasma to enhance surface properties. In order to avoid large movement and deformation of the flexible substrate and maintain a stable temperature during the film preparation process, the flexible PEN and PDMS substrates are supported by rigid glass substrate. The PEN substrate is fixed on the glass by double-sided tape, and the PDMS substrate is directly attached to the glass due to its good adhesion. These prepared substrates were subsequently coated with a perovskite precursor solution using a spin-coating technique. The process involved heating the substrate on a hotplate at 100°C for 3 minutes to ensure proper adhesion and film formation. This was followed by a precisely controlled spin-coating step at a speed of 4000 rpm for 30 seconds. A volume of 90 μ L of the perovskite precursor solution was accurately dispensed onto the substrate using a pipette, and immediately after the spin-coating process, the substrate was transferred to a hotplate set at 100°C for annealing over 10 minutes to crystallize the film. The fabrication of the devices was finalized by depositing 80 nm thick gold electrodes through thermal evaporation under a high vacuum of 5 × 10⁻⁵ Pa at a deposition rate of 0.1 Å/s, establishing the electrical contacts. The active area of the resulting vertical structure devices was meticulously defined to be 0.038 mm².

Device characterization: Grazing incidence wide-angle X-ray scattering (GIWAXS) analyses of the films were performed using a Xeuss 2.0 system from Xenocs, France, with a wavelength of 1.54189 Å and an incident angle of 0.3°. X-ray diffraction (XRD) measurements were conducted using a Smart Lab 3kW X-ray diffractometer. The films' surface morphologies were examined via scanning electron microscopy (SEM) using a Zeiss EVO 18 SEM. Absorption spectra were acquired with a Shimadzu UV-2600 spectrophotometer. Steady-state and time-resolved photoluminescence (TRPL) measurements were conducted using a Fluorolog-3 fluorescence spectrophotometer from Horiba Scientific. The photoluminescence quantum yield (PLQY) of the thin films was determined using a SpectrumTEQ-EL electroluminescence quantum efficiency

measurement system (Ocean Optics) under 375 nm excitation. The current-voltage (*I-V*) characteristics of the devices were recorded with a Keysight B2912A source meter. Low-temperature PL spectroscopy and *I-V* measurements were performed using a cryostat system in conjunction with a Fluorolog-3 fluorescence spectrophotometer and a Keysight B2912A source meter, respectively.

Supplementary Figures

Figure S1. XRD patterns of quasi-2D perovskite films deposited on four different substrates, indexed by the (110) plane.

Figure S2. SEM images of perovskite on four different substrates, magnification at (a) 500x and (b) 10000x.

Figure S3. Grain size distribution in quasi-2D perovskite films on four different substrates, as derived from SEM images.

Figure S4. UV-vis absorption spectra of quasi-2D perovskites deposited on glass, PEN, and PDMS substrates.

Figure S5. PL spectra of quasi- 2D perovskites on four substrates measured at various temperatures.

Figure S6. Variation of perovskite peak energy, corresponding to 3D-like phases, with temperature for quasi-2D perovskites on four substrates.

Figure S7. Cross-sectional SEM image of a quasi-2D perovskite film prepared using the described experimental method.

Figure S8. Variation of conductivity with temperature for Au/perovskite/Au vertical structure devices on four different substrates.

Figure S9. *I-V* curve of Au/perovskite/Au lateral device on silicon substrate.

Figure S10. Variation of conductivity with temperature for Au/perovskite/Au lateral structure devices on four different substrates.

Supplementary Table

Table S1: Determination of time constants in PL decay kinetics through tri-exponential fitting of TRPL spectra.

Substrate	t ₁ (ns)	t2(ns)	t3(ns)	A_1	A ₂	A 3	taver(ns)
Si	17.0	564.7	1.8	124	264	255	235.7
Glass	32.6	521.6	1.5	67	65	236	99.4
PEN	14.8	782.6	1.6	54	221	228	346.1
PDMS	23.6	342.9	1.7	35	112	270	95.7