Temperature and Pressure Dependent Luminescence Mechanism of Cubic Structured ZnS:Mn Nanophosphor under UV Excitation

A.K. Somakumar ^a, Y. Zhydachevskyy ^a, D. Wlodarczyk ^a, S.S Haider ^a, J. Barzowska ^b, K.R Bindu ^c, Y. K. Edathumkandy ^a, Tatiana Zajarniuk^a, A. Szewczyk^a, S. Narayanan ^a, A. Lysak ^a, H. Przybylińska ^a, E.I Anila ^d, A. Suchocki ^{a*}

^a Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668, Warsaw, Poland

^b Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University

of Gdansk, ul. Wita Stwosza 57, 80-952 Gdańsk, Poland

^c Sree Sankara Vidyapeetom College, Valayanchirangara, Kerala, 683556, India

^dCHRIST (Deemed to be University), Bengaluru, Karnataka, 560029, India

Figure S1. Comparison of room temperature EPR spectra of the zinc blende and wurtzite ZnS samples doped with Mn²⁺ used in the I-ML experiment. The inset shows an enlarged view of the EPR spectrum of the zinc blende sample. The hyperfine splitting in the wurtzite sample is smeared

out due to considerable spin-spin interaction.

Figure S2. Comparison of room temperature (RT) and low-temperature SQUID magnetometry measurements of (a) zinc blende and (b) wurtzite ZnS:Mn²⁺ samples. The RT paramagnetic behaviour in (a) is obscured by the dominant diamagnetic contribution of the host.