Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Self-powered Solar-blind Ultraviolet-Visible Cu₂O/Ga₂O₃ Photodetectors

Xiaodan Wang, Jianping Xu*, Shaobo Shi, Lina Kong, Xiangwei He, Jiahang He,

Xiaosong Zhang, and Lan Li*

Fig. S1 EDS plots (a)-(c) and (d)-(f) cross-sections of Cu₂O(9.5)/Ga₂O₃NRs

Fig. S2 Auger spectrum of Cu

Fig. S4 Optical band gap of Ga₂O₃ and Cu₂O prepared at different pH values

The band gap (E_g) of the thin film can be calculated by Tauc formula (1.1)-(1.3) through diffuse reflectance spectrum, where F (R) is a function related to diffuse reflectance R, α is the absorption coefficient, which is proportional to F (R), hv is photon energy, A and B are constants, and n depends on the electron transition mode in the material, so take 1/2 for the direct band gap semiconductor and 2 for the indirect band gap semiconductor.

$$F(R) = \frac{(1-R)^2}{2R}$$
(1.1)

$$(\alpha h v)^{1/n} = \mathcal{A} \left(\mathbf{h}^{v - E} g \right) \tag{1.2}$$

$$(F(R)hv)^{1/n} \operatorname{B}(h^{v-E}g)$$
(1.3)

Fig. S5 Dark-state and light-state I-V curves of Cu_2O/Ga_2O_3 heterojunction devices prepared at different pH values and under optical power density of 4 mW/cm² illumination (b) pH = 9, (c) pH = 9.5 and (d) pH = 10.5

Fig. S6 I-t curves of Cu₂O/Ga₂O₃ heterojunction devices under 0 V bias and different wavelengths of light illumination

Fig. S7 Response velocity of Cu₂O/Ga₂O₃ prepared by different pH deposition solutions under (a) 254, (b) 475 nm illumination

Heterojunction	Wavelength	$ au_{ m rise}$	τ_{decay}	Ref
β-Ga ₂ O ₃ /GaN	254 nm	0.14 s	0.07 s	[41]
NiO/Ga ₂ O ₃	254 nm	0.34 s	3.65 s	[42]
Ga ₂ O ₃ /Spiro-MeOTAD	248 nm	2.98 µs	28.49 µs	[43]
PEDOT:PSS/Ga2O3	248 nm	3.31 µs	71.2 µs	[44]
SnSrO ₃ /Ga ₂ O ₃	254 nm	0.15 s	0.06 s	[45]
Au/Ga ₂ O ₃ /Si	254 nm	32.2 ms	78 ms	[46]
Ga:ZnO/Ga ₂ O ₃	254 nm	179 ms	272 ms	[47]
Pt NPs/NiO/Ga ₂ O ₃	254 nm	4.6 ms	7.6 ms	[48]
NSTO/Ga ₂ O ₃	254 nm	0.21 s	0.07 s	[49]
Cu ₂ O/Ga ₂ O ₃	254 nm	2.48 ms	11.72 ms	This Work

Table S1. Comparison of the photoresponse time of the Cu₂O/Ga₂O₃ PDs with the other previously reported Ga₂O₃ based PDs without external power supply