Supporting Information

"All-organic" Electrode Material Toward High-Performing Rigid to Flexible Supercapacitor Devices

Pradeep Sachan, Priyanka Makkar, Ankur Malik, and Prakash Chandra Mondal* Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh-208016, India E-mail: pcmondal@iitk.ac.in (PCM)

Contents

1) Characterization of PDI-AB molecule:

1.1) ¹H and ¹³C{¹H} NMR spectrum:

Figure S1: ¹H NMR spectrum of PDI-AB recorded in DMSO-d6. Peak positions in the spectrum were assigned relative to the TMS reference, and integration was conducted by treating the NH peak as equivalent to one hydrogen atom.

Figure S2: ¹³C{¹H} NMR spectrum of PDI-AB recorded in DMSO- d_6 . Peak positions in the spectrum were assigned relative to the TMS reference.

1.2) Mass spectrum:

Figure S3: HRMS (ESI-MS, positive mode) of PDI-AB mass spectrum. The full-scan mass spectra revealed an isotope pattern match at 623.96 (m/z), as displayed in the zoomed image with intensity ratio (1:0.4:0.1:0.05).

2. TGA spectrum:

Figure S4: TGA spectrum of PDI-AB molecule in terms of % of weight loss by increasing temperature.

3. FT-IR spectra:

Figure S5: Comparison of FT-IR spectrum of PDI molecule (Red) and PDI-AB molecule (Black). The characteristic stretching frequencies are highlighted.

4. UV-Vis spectrum of PDI and PDI-AB:

Figure S6: Comparison of UV-Vis spectrum of PDI-AB (black), and PDI (red) recorded in diluted solution (DMF as solvent).

5. Cyclic voltammogram of PDI and PDI-AB:

Figure S7: Cyclic voltammograms of PDI and PDI-AB, where ITO, Ag/AgNO₃, and a Pt wire as a working, reference, and counter electrodes, respectively. The CV was recorded at a scan rate of 100 mV/s.

6. Preparation of PDI-AB/ITO film through drop-casting:

Figure S8: Stepwise representation to prepare PDI-AB/ITO electrode made via drop-casting method.

7. UV-Vis spectrum of PDI-AB in solution and film: The UV-Vis spectrum of PDI-AB was recorded in DMF solvent and PDI-AB/ITO. The absorption spectrum of thin films displays broad and blue-shifted **(Figure S9)**.

Figure S9: Comparison of UV-Vis absorption spectrum of PDI-AB in DMF solution (Black) and thin film on ITO electrode (Red).

8. Optical microscopy for morphology and thickness measurement:

Figure S10: Morphology and cross-sectional images to deduce the material morphology and thickness of drop-casted PDI-AB and PDI-AB//PMMA-LiClO₄-PC as compared to bare ITO.

9. Density functional theory (DFT) study: DFT calculated were performed to optimize the model structures and to predict the energy levels frontier orbitals of PDI and PDI-AB molecule by using B3LYP functional and $6-31+G(d,p)$ basis set, as implemented in the Gaussian 09 program.¹ Graphical output files were generated with the help of the GaussView program (version 6.0) **(Figure S11)**. Furthermore, we investigated the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) energies, band gap (Eg), electron affinity (EA), and ionization potential (IP) of both PDI and PDI-AB molecules. In addition to modifying the HOMO-LUMO levels of the molecule, the introduction of substituents (2- Aminobenzimidazole) to imide position induces a twist in the perylene ring. To mitigate electrostatic repulsions between the substituents and hydrogen atoms on opposite bay positions, the perylene ring stabilizes into a twisted geometry. A schematic representation of the dihedral angles formed between 2-Aminobenzimidazole and perylene rings is presented in the main text **Figure 1c**, illustrating angles of θ_1 (88.19°) and θ_2 (91.73°). Changes in these dihedral angles in a neutral PDI derivative can influence the relative energies of its reduced forms, such as the radical anion and dianion.

HOMO

Figure S11: HOMO and LUMO contours of (a) PDI molecule, and (b) PDI-AB molecule.

10. Determination of HOMO and LUMO for PDI-AB molecule:

Figure S12: (a) Tauc plot of PDI-AB in dimethylformamide solution, and (b) CVs of PDI-AB in dimethylformamide solution with the presence of ferrocene, where ITO, Ag/AgNO₃, and a Pt wire as a working, reference, and counter electrodes, respectively. The CV was recorded at a scan rate of 50 mV/s.

11. GCD data at various mass loading of PDI-AB molecule on ITO electrode:

Figure S13: GCD curves of ITO/PDI-AB//PMMA-LiClO₄-PC//PDI-AB/ITO device at a current density of 1 mA/g with various mass loading.

12. Electrochemical performance of SSC devices:

Figure S14: (a) Cyclic voltammogram at varying scan rates (5-2000 mV/s), (b) GCD curves at varying current density, (c) Variation of current density vs. C_S and columbic efficiency, (d) GCD cycle stability up to 2000 cycles at 1.5 mA/g, (e) CV at 10 mV/s showing capacitive (blue) and diffusion-controlled (white) charge storage process, and (f) Diffusion controlled and non-diffusioncontrolled contribution to total C_s at various scan rates for rigid ITO/PDI-AB//PMMA-LiClO₄-PC//PDI-AB/ITO SSC device.

13. Peak current of PDI-AB molecule for first and second redox peak:

Figure S15: Cyclic voltammograms of PDI-AB (1 mM) and LiClO₄ as a supporting electrolyte (3 mM) recorded in dimethylformamide at different scan rates, where ITO as a working electrode, Pt wire as a counter electrode, and Ag/AgNO₃ as a reference electrode.

Figure S16: The relationship between peak current with (a) scan rate, and (b) square root of scan rate.

14. Cyclic stability of ITO/PDI-AB//PMMA-LiClO4-PC//PDI-AB/ITO device with rigid ITO electrode:

Figure S17: JV hysteresis loop of ITO/PDI-AB//PMMA-LiClO₄-PC//PDI-AB/ITO device with 0 to +1.6 V potential window at 1000 mV/s scan rates up to 1000 cycles.

15. NMR spectrum of PDI-AB after 2000th GCD cycles: The ¹H NMR spectrum of the PDI-AB molecule was recorded in DMSO- d_6 after completing 2000th GCD cycles at a current density of 1.5 mA/g to assess the stability of the organic material. This spectrum was compared with a previous ¹H NMR spectrum of the same molecule. The ¹H NMR spectrum of PDI-AB (green) after GCD cycling includes additional peaks in the non-aromatic region, which are attributed to the presence of PMMA-LiClO4-PC and Nafion in the PDI-AB sample.

Figure S18: Comparison of ¹H NMR spectrum of PDI-AB molecule before (red) and after (green) GCD cycles (DMSO-d6).

16. Mass spectrum of PDI-AB after 2000th GCD cycles:

17. X-ray photoelectron spectra analysis of PDI-AB after 2000th GCD cycles:

X-ray photoelectron spectroscopy measurements were performed on a device after 2000 GCD cycles, which contains PDI-AB, Nafion, and PMMA-LiClO₄-PC. Our primary objective was to identify and assign the PDI-AB-related peaks within the spectra.

Figure S20: X-ray photoelectron spectroscopy measurements results after 2000th cycles. (a) Full survey scan of PDI-AB/ITO confirming the presence of C 1s, N 1s, and O 1s, (b) XPS spectra of C 1s orbital, (c) XPS spectra of N 1s orbital, and (d) XPS spectra of O 1s.

18. FE-SEM images of PDI-AB before and after 2000th GCD cycles:

Figure S21: FESEM image of PDI-AB/ITO (a) Before GCD cycles, and (b) After 2000th GCD cycles at a 1.5 mA/g current density.

19. Log j **vs.** Log ν (b-value) plots: The plot of log j vs log ν for different voltage ranges from $+0.25$ $V - (+1.25)$ V. The b-values are obtained through linear fitting and the b-values are in the range of 0.99 – 0.66 which lies in between the SCs and the batteries, suggesting the coexistence of diffusive and capacitive charge storage mechanism at the electrode/electrolyte interface and confirms the capacitive and diffusive nature of the supercapattery.^{2,3}

Figure S22: Log j vs. Log ν (b-value) plots at different voltages.

Figure S23: Log j vs. Log ν (b-value) plots at different +0.5 V voltage.

20. j (V). -1/2 vs. 1/2 plot:

Figure S24: Linear fitting of the *k*¹ and *k*² parameters in the sweep rate range of 10–2000 mV *s* −1 $(R²$ value lies between 0.94 to 0.98).

21. Electrochemical Impedance Spectra for SSC device:

Figure S25: (a) Nyquist plot (experimental and fitted data), Bode plots, (b) $|Z|$ vs frequency, (c) phase angle vs frequency, and (d) The Randles equivalent fitted circuit model of the rigid ITO/PDI-AB//PMMA-LiClO4-PC//PDI-AB/ITO SSC device.

22. Cyclic stability and different bend angles measurement:

Figure S26: JV hysteresis loop of ITO/PDI-AB//PMMA-LiClO₄-PC//PDI-AB/ITO device with flexible ITO, potential range 0 to $+1.6$ V at 1000 mV/s scan rates up to 1000 cycles.

Figure S27: JV hysteresis loop of ITO/PDI-AB//PMMA-LiClO₄-PC//PDI-AB/ITO device with flexible ITO at different bend angles, potential range 0 to +1.6 V at 1000 mV/s scan rates.

 $*$ GF = Graphite foil

23. Electrochemical parameters for equivalent circuit model:

Table S5. EIS fitted parameters for flexible ITO/PDI-AB//PMMA-LiClO4-PC//PDI-AB/ITO SSC device

24. Photocurrent measurements:

Figure S28: Comparison photocurrent measurement of ITO/PDI-AB//PMMA-LiClO₄-PC//PDI-AB/ITO at three different voltages $(+1, +1.5, +2V)$.

25. References:

- 1 S. Kim, C. Lee, S. Lee, S. H. Baek, D.-H. Ko and W.-S. Han, *J. Mater. Res. Technol.*, 2022, **17**, 2675–2683.
- 2 M. Z. Iqbal, M. M. Faisal, M. Sulman, S. R. Ali, A. M. Afzal, M. A. Kamran and T. Alharbi, *J. Energy Storage*, 2020, **29**, 101324.
- 3 A. Cymann-Sachajdak, M. Graczyk-Zajac, G. Trykowski and M. Wilamowska-Zawłocka, *Electrochim. Acta*, 2021, **383**, 138356.
- 4 S. Sharma, R. Soni, S. Kurungot and S. K. Asha, *J. Phys. Chem. C*, 2019, **123**, 2084–2093.
- 5 M. R. Biradar, A. M. Kale, B. C. Kim, S. V. Bhosale and S. V. Bhosale, *Energy Technol.*, 2022, **10**, 1–10.
- 6 S. Sharma, R. Soni, S. Kurungot and S. K. Asha, *Macromolecules*, 2018, **51**, 954–965.
- 7 D. Tian, H.-Z. Zhang, D.-S. Zhang, Z. Chang, J. Han, X.-P. Gao and X.-H. Bu, *RSC Adv.*, 2014, **4**, 7506.
- 8 M. E. Bhosale and K. Krishnamoorthy, *Chem. Mater.*, 2015, **27**, 2121–2126.
- 9 P. Gómez, J. Wang, M. Más-Montoya, D. Bautista, C. H. L. Weijtens, D. Curiel and R. A. J. Janssen, *Sol. RRL*, 2021, **5**, 1–11.
- 10 H.-S. Zhang, X.-M. Dong, Z.-C. Zhang, Z.-P. Zhang, C.-Y. Ban, Z. Zhou, C. Song, S.-Q. Yan, Q. Xin, J.-Q. Liu, Y.-X. Li and W. Huang, *Nat. Commun.*, 2022, **13**, 4996.