# Supporting Information

Facile Synthesis of Benzothiadiazole and Its Derivatives-based Covalent Organic Frameworks using "Two-in-One" Monomers for Photocatalytic Hydrogen Generation

Jia-Xin Guo,<sup>†,‡,#</sup> Ze-Yang Wang,<sup>†,#</sup> Chao-Qin Han,<sup>†</sup> Shuai Sun<sup>†,‡</sup> Lei Wang,<sup>\*,†</sup> Gonghao Lu,<sup>\*,‡</sup> Xiao-Yuan Liu<sup>\*,†</sup>

<sup>†</sup>Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China

<sup>‡</sup> School of Chemical Engineering, University of Science and Technology Liaoning, 185

Qianshan Zhong Road, Anshan, 114051, P. R. China

#### Chemicals

4,9-dibromonaphtho[2,3-c][1,2,5]thiadiazole, 4,9-dibromonaphtho[2,3-c][1,2,5]selenadiazole and 4,7-dibromobenzo [c] [1,2,5] selenadia zole were purchased from Jilin Chinese Academy of Science-Yanshen Technology Co., Ltd. 4(4-formylphenyl)boronic acid, 1,3,5tribromobenzene, neopentyl glycol, p-toluenesulfonic acid, 4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)aniline 4,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2and yl)benzo[c][1,2,5]thiadiazole were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. All the other chemicals were obtained from the chemical supplies and used without further purification.

#### Characterization

Nuclear magnetic resonance (NMR) data were collected using 400 MHz JEOL JNM-ECZ400S. Powder X-ray diffraction (PXRD) patterns were recorded using Bruker D8 Advance X-ray diffractometer with Cu Ka radiation. The UV-vis spectra were recorded on Shimadzu UV-3600 photoluminescent spectra spectrophotometer. The measured FLS1000 were on spectrofluorometer (Edinburgh Instruments). The TGA data were obtained using TGA 550 (TA Instruments) analyzer and the samples were heated from room temperature to 800°C at a ramp rate of 10°C / min. Scanning electron micrographs (SEM) images were taken using a JEOL JSM-IT800 (SHL). Fourier transform infrared (FT-IR) spectra were recorded from 400 to 4000 cm<sup>-1</sup> on a PerkinElmer spectrometer. Transmission electron microscope (TEM) was performed by Thermo Scientific Talos F200S. Gas chromatographic (GC) analysis was carried out on a CEAULIGHT GC-7920 instrument equipped with a thermal conductivity detector (TCD) using high pure nitrogen as the carrier gas.

## **Photoelectrochemical measurements**

All the photoelectrochemical measurement were obtained on an electrochemical workstation (CHI660E, CH Instrument Corp, Shanghai). 5 mg of HIAM-0011/HIAM-0012/HIAM-0013/HIAM-0014 was added to a mixed solution of 1 mL ethanol and 10  $\mu$ L 5 wt% Nafion. The mixture was then ultrasonicated for two hours to get homogeneous suspension. The suspension was dropped on the surface of ITO glass and dried at room temperature. A standard three electrode system was used with the photocatalyst-coated ITO glass as the working electrode, Pt wire as the counter electrode and an Ag/AgCl as a reference electrode. 0.1 M Na<sub>2</sub>SO<sub>4</sub> aqueous solution was used as the electrolyte. Mott-Schottky measurement was carried out at frequency of 1200, 1500 and 1800 Hz with amplitude of 5 mV.

#### **Stability testing of COFs**

Samples of HIAM-0011/HIAM-0012/HIAM-0013/HIAM-0014 (~ 5 mg) was suspended in 1 mL HCl solution (pH = 2, pH = 4), NaOH solution (pH = 10, pH = 12), water, or boiling water. These suspensions were tightly sealed in 5 mL glass vials and stored at room temperature for 24 hours (boiling water needs to be heated at 100 °C). The samples were then washed with ethanol and dried under 100 ° C vacuum. The resultant samples were used for PXRD and IR analysis.

#### Photocatalytic hydrogen evolution

5 mg HIAM-0011/HIAM-0012/HIAM-0013/HIAM-0014 was well dispersed in 50 mL deionized water containing 0.1 M ascorbic acid (AA) as the sacrificial agent. Then 0.01 M chloroplatinic acid ( $H_2PtCl_6$ ) aqueous solution (1 wt% Pt) was introduced into the reaction

system. The reaction solution was evacuated under vacuum to completely discharge air. After that the reaction system was irradiated vertically under 300 W xenon lamp with  $\lambda$ >420 nm cutoff filter. For long-term and recycled experiment, 5 mg HIAM-0011 was adopted with 50 mL deionized water containing 0.1 M AA (1 wt% Pt) and radiated under 300 W xenon lamp with  $\lambda$ >420 nm cut-off filter.

## Synthesis of 3,5-bromo-[1,1'-biphenyl]-4'-formaldehyde



(4-formylphenyl)boronic acid (100.0 mmol, 14.99 g), 1,3,5-tribromobenzene (200.0 mmol, 62.96 g), PdCl<sub>2</sub> (5.0 mmol, 0.88 g), PPh<sub>3</sub> (10.0 mmol, 2.62 g) and K<sub>2</sub>CO<sub>3</sub> (200.0 mmol, 27.64 g) were added into one 1000 mL flask containing 400 mL dioxane and 100 mL water. The mixture was degassed four times and stirred at 105 °C overnight under nitrogen. After cooling down to room temperature, the organic solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography to offer 3',5'-dibromo-[1,1'-biphenyl]-4-carbaldehyde as a white solid (12.0 g, yield: 35.3 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 10.06 (1H), 7.87 (2H), 7.70 (2H), 7.69 (2H), 7.68(1H).

# Synthesis of 2-(3',5'-dibromo-[1,1'-biphenyl]-4-yl)-5,5-dimethyl-1,3-dioxane



3',5'-dibromo-[1,1'-biphenyl]-4-carbaldehyde (6.00 g, 17.65 mmol), neopentyl glycol (5.51 g, 52.94 mmol) and *p*-toluenesulfonic acid (0.30 g, 1.76 mmol) were added to a 250 mL of twoneck round-bottom flask. The reaction mixture was firstly deoxygenized with argon for three times, and then 130 mL of toluene was added. The reaction mixture was heated 150 °C overnight under nitrogen. After cooling down to room temperature, the organic solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography to offer 2-(3',5'-dibromo-[1,1'-biphenyl]-4-yl)-5,5-dimethyl-1,3-dioxane as a white solid (7.52 g, yield: 99.0 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 7.62 (3H), 7.58 (2H), 7.52 (2H), 5.43 (1H), 3.79 (2H), 3.66 (2H), 1.30 (3H), 0.81 (3H).

Synthesis of 5'-bromo-4''-(5,5-dimethyl-1,3-dioxan-2-yl)-[1,1':3',1''-terphenyl]-4-amine



4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (8.82 mmol, 1.93 g), 2-(3',5'-dibromo-[1,1'-biphenyl]-4-yl)-5,5-dimethyl-1,3-dioxane (17.65 mmol, 7.52 g), PdCl<sub>2</sub> (0.40 mmol, 0.07 g), PPh<sub>3</sub> (0.80 mmol, 0.22 g) and K<sub>2</sub>CO<sub>3</sub> (16.0 mmol, 2.20 g) were added into one 250 mL flask containing 120 mL dioxane and 30 mL water. The mixture was degassed four times and stirred at 105 °C for 2 hours under nitrogen. After cooling down to room temperature, the organic solvent was removed under reduced pressure. The crude product was purified by Al<sub>2</sub>O<sub>3</sub> column chromatography to offer 5'-bromo-4"-(5,5-dimethyl-1,3-dioxan-2-yl)-[1,1':3',1"-terphenyl]-4-amine as a yellow solid (2.59 g, yield: 67.0 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 7.63 (2H), 7.58 (5H), 7.41 (2H), 6.75 (2H), 5.41 (1H), 3.79 (2H), 3.67 (2H), 1.31 (3H), 0.81 (3H). **Synthesis of 5',5''''-(benzo[c][1,2,5]thiadiazole-4,7-diyl)bis(4''-(5,5-dimethyl-1,3-dioxan-**

2-yl)-[1,1':3',1''-terphenyl]-4-amine) (BTA)



5'-bromo-4"-(5,5-dimethyl-1,3-dioxan-2-yl)-[1,1':3',1"-terphenyl]-4-amine (6.0 mmol, 2.62 g), 4,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzo[c][1,2,5]thiadiazole (2.5 mmol, 0.93 g), PdCl<sub>2</sub> (0.20 mmol, 0.03 g), PPh<sub>3</sub> (0.40 mmol, 0.11 g) and K<sub>2</sub>CO<sub>3</sub> (8.0 mmol, 1.10 g) were added into one 250 mL flask containing 80mL dioxane and 20 mL water. The mixture was degassed four times and stirred at 105 °C overnight under nitrogen. After cooling down to room temperature, the organic solvent was removed under reduced pressure. The crude product was purified by Al<sub>2</sub>O<sub>3</sub> column chromatography to offer 5',5""-(benzo[c][1,2,5]thiadiazole-4,7diyl)bis(4"-(5,5-dimethyl-1,3-dioxan-2-yl)-[1,1':3',1"-terphenyl]-4-amine) as a yellow solid (1.90 g, yield: 89.6 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.08 (4H), 7.90 (2H), 7.81 (2H), 7.76 (4H), 7.68 (4H), 7.55 (4H), 6.80 (4H), 5.44 (2H), 3.80 (4H), 3.68 (4H), 1.32 (6H), 0.77 (6H).

Synthesis of Synthesis of 4''-(5,5-dimethyl-1,3-dioxan-2-yl)-5'-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)-[1,1':3',1''-terphenyl]-4-amine



5'-bromo-4"-(5,5-dimethyl-1,3-dioxan-2-yl)-[1,1':3',1"-terphenyl]-4-amine (8.67 mmol, 3.80

g), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (10.40 mmol, 2.64 g), Pd(dppf)Cl<sub>2</sub> (0.43 mmol, 0.32 g) and AcOK (26.00 mmol, 2.55 g) were added into one 250 mL flask containing 60 mL dioxane. The mixture was degassed four times and stirred at 105 °C overnight under nitrogen. After cooling down to room temperature, the organic solvent was removed under reduced pressure. The crude product was purified by Al<sub>2</sub>O<sub>3</sub> column chromatography to offer 4"-(5,5-dimethyl-1,3-dioxan-2-yl)-5'-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)-[1,1':3',1"-terphenyl]-4-amine as a yellow solid (3.20 g, yield: 76.05 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 7.94 (2H), 7.82 (1H), 7.68 (2H), 7.56 (2H), 7.48 (2H), 6.76 (2H), 5.44 (1H), 3.79 (2H), 3.67 (2H), 1.36 (12H), 1.31 (3H), 0.81 (3H).

Synthesis of 5',5''''-(benzo[c][1,2,5]selenadiazole-4,7-diyl)bis(4''-(5,5-dimethyl-1,3dioxan-2-yl)-[1,1':3',1''-terphenyl]-4-amine) (BSA)



4"-(5,5-dimethyl-1,3-dioxan-2-yl)-5'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1':3',1"terphenyl]-4-amine (3.30 mmol, 1.60 g), 4,7-dibromobenzo[c][1,2,5]selenadiazole (1.50 mmol, 0.51 g), PdCl<sub>2</sub> (0.20 mmol, 35.0 mg), PPh<sub>3</sub> (0.40 mmol, 0.11 g) and K<sub>2</sub>CO<sub>3</sub> (8.0 mmol, 1.10 g) were added into one 250 mL flask containing 80 mL dioxane and 20 mL water. The mixture was degassed four times and stirred at 105 °C for 42 hours under nitrogen. After cooling down to room temperature, the organic solvent was removed under reduced pressure. The crude

product was purified by  $Al_2O_3$  column chromatography to offer 5',5""-(benzo[*c*][1,2,5]selenadiazole-4,7-diyl)bis(4"-(5,5-dimethyl-1,3-dioxan-2-yl)-[1,1':3',1"terphenyl]-4-amine) as a green solid (0.56 g, yield: 41.6 %). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$ (ppm) 8.02 (4H), 7.92 (2H), 7.82 (4H), 7.79 (2H), 7.60 (4H), 7.57 (4H), 6.67 (4H), 5.45 (2H), 3.67 (4H), 3.62 (4H), 1.18 (6H), 0.73 (6H).

Synthesis of 5',5''''-(naphtho[2,3-c][1,2,5]thiadiazole-4,9-diyl)bis(4''-(5,5-dimethyl-1,3dioxan-2-yl)-[1,1':3',1''-terphenyl]-4-amine) (NTA)



4"-(5,5-dimethyl-1,3-dioxan-2-yl)-5'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1':3',1"terphenyl]-4-amine (6.00 mmol, 2.91 g), 4,9-dibromonaphtho[2,3-*c*][1,2,5]thiadiazole (2.50 mmol, 0.86 g), PdCl<sub>2</sub> (0.40 mmol, 0.07 g), PPh<sub>3</sub> (0.80 mmol, 0.21 g) and K<sub>2</sub>CO<sub>3</sub> (16.0 mmol, 2.2 g) were added into one 250 mL flask containing 80 mL dioxane and 20 mL water. The mixture was degassed four times and stirred at 105 °C for 42 hours under nitrogen. After cooling down to room temperature, the organic solvent was removed under reduced pressure. The crude product was purified by Al<sub>2</sub>O<sub>3</sub> column chromatography to offer 5',5""-(naphtho[2,3-*c*][1,2,5]thiadiazole-4,9-diyl)bis(4"-(5,5-dimethyl-1,3-dioxan-2-yl)-[1,1':3',1"-terphenyl]-4-amine) as a tawny solid (1.93 g, yield: 85.7 %). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  (ppm) 8.05 (2H), 7.96 (2H), 7.81 (4H), 7.74 (4H), 7.52 (4H), 7.50 (4H), 7.46 (2H), 6.65 (4H), 5.44 (2H), 3.66 (4H), 3.62 (4H), 1.16 (6H), 0.72 (6H).

Synthesis of 5',5''''-(naphtho[2,3-c][1,2,5]selenadiazole-4,9-diyl)bis(4''-(5,5-dimethyl-1,3-dioxan-2-yl)-[1,1':3',1''-terphenyl]-4-amine) (NSA)



4"-(5,5-dimethyl-1,3-dioxan-2-yl)-5'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1':3',1"terphenyl]-4-amine (6.00 mmol, 2.91 g), 4,9-dibromonaphtho[2,3-*c*][1,2,5]selenadiazole (2.50 mmol, 0.98 g), PdCl<sub>2</sub> (0.40 mmol, 0.07 g), PPh<sub>3</sub> (0.80 mmol, 0.21 g) and K<sub>2</sub>CO<sub>3</sub> (16.0 mmol, 2.2 g) were added into one 250 mL flask containing 80 mL dioxane and 20 mL water. The mixture was degassed four times and stirred at 105 °C for 42 hours under nitrogen. After cooling down to room temperature, the organic solvent was removed under reduced pressure. The crude product was purified by Al<sub>2</sub>O<sub>3</sub> column chromatography to offer 5',5""-(naphtho[2,3-*c*][1,2,5]selenadiazole-4,9-diyl)bis(4"-(5,5-dimethyl-1,3-dioxan-2-yl)-[1,1':3',1"-terphenyl]-4-amine) as a rose pink solid (1.57 g, yield: 66.2 %). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  (ppm) 7.92 (2H), 7.84 (2H), 7.78 (4H), 7.68 (4H), 7.51 (4H), 7.49 (4H), 7.29 (2H), 6.64 (4H), 5.43 (2H), 3.66 (4H), 3.62 (4H), 1.16 (6H), 0.68 (6H).



BTA (29.8 mg, 0.035 mmol) was added to a Pyrex tube (10 mL). *n*-butyl alcohol (*n*-BuOH, 1 mL), or methanol (MeOH, 1 mL) or EtOH (1 mL) or 1-pentanol (1 mL) or benzyl alcohol (BnOH, 1 mL) or tetrahydrofuran (THF, 1 mL) or mesitylene (1 mL) or *o*-dichlorobenzene (*o*-DCB, 1 mL) was added separately in eight tubes. The mixture was sonicated for 3 minutes followed by addition of 6 M acetic acid (0.3 mL). The tube was degassed through three freeze-pump-thaw cycles and then heated at 120 °C for 72 h. After cooling to room temperature, the precipitate was collected by filtration and washed with *N*,*N*-dimethylformamide (DMF) and EtOH. The yellow solid was Soxhlet extracted in EtOH for 24 h and dried under 100 °C vacuum to afford HIAM-0011.



A Pyrex tube (10 mL) containing BSA (31.5 mg, 0.035 mmol) and *n*-BuOH (1 mL) was sonicated for 3 min. Subsequently, 0.3 mL of acetic acid (6 M) was added. The tube was degassed through three freeze-pump-thaw cycles and then heated at 120 °C for 72 h. After cooling to room temperature, the precipitate was collected by filtration and washed with DMF and EtOH. The yellow solid was Soxhlet extracted in EtOH for 24 h and dried under 100 °C vacuum to afford HIAM-0012.



A Pyrex tube (10 mL) containing NTA (31.5 mg, 0.035 mmol) and *n*-BuOH (1 mL) was sonicated for 3 min. Subsequently, 0.3 mL of acetic acid (6 M) was added. The tube was degassed through three freeze-pump-thaw cycles and then heated at 120 °C for 72 h. After cooling to room temperature, the precipitate was collected by filtration and washed with DMF and EtOH. The red solid was Soxhlet extracted in EtOH for 24 h and dried under 100 °C vacuum to afford HIAM-0013.



A Pyrex tube (10 mL) containing NSA (33.2 mg, 0.035 mmol) and *n*-BuOH (1 mL) was sonicated for 3 min. Subsequently, 0.3 mL of acetic acid (6 M) was added. The tube was degassed through three freeze-pump-thaw cycles and then heated at 120 °C for 72 h. After cooling to room temperature, the precipitate was collected by filtration and washed with DMF and EtOH. The purple solid was Soxhlet extracted in EtOH for 24 h and dried under 100 °C vacuum to afford HIAM-0014.



Figure S1. FT-IR spectra of HIAM-0011 synthesized in *n*-BuOH.



Figure S2. FT-IR spectra of HIAM-0011 synthesized using different organic solvents.



Figure S3. Solid-state <sup>13</sup>C NMR spectra of HIAM-0011.



Figure S4. The XPS spectra of HIAM-0011.



Figure S5.  $N_2$  adsorption-desorption isotherms of HIAM-0011 at 77 K (left) and the corresponding pore size distribution (right).



Figure S6. The SEM images of HIAM-0011 synthesized using different organic solvents.



Figure S7. TEM images of HIAM-0011 synthesized in *n*-BuOH.



Figure S8. Energy dispersive X-ray analysis of HIAM-0011.



Figure S9.  $N_2$  adsorption-desorption isotherms at 77 K and the corresponding pore size distribution of HIAM-0012 (a-b), HIAM-0013 (c-d) and HIAM-0014 (e-f).



Figure S10. The FT-IR spectra of HIAM-0012 (a), HIAM-0013 (b) and HIAM-0013 (c) and the corresponding organic building units.



Figure S11. Solid-state <sup>13</sup>C NMR spectra of HIAM-0012 (a), HIAM-0013 (b) and HIAM-0014 (c).



Figure S12. The XPS spectra of HIAM-0012.



Figure S13. The XPS spectra of HIAM-0013.



Figure S14. The XPS spectra of HIAM-0014.



Figure S15. The SEM images of HIAM-0012 (a), HIAM-0013 (b) and HIAM-0014 (c).



Figure S16. TGA curves of HIAM-0011 (a), HIAM-0012 (b), HIAM-0013 (c) and HIAM-0014 (d).



Figure S17. The PXRD patterns of HIAM-0011 (a), HIAM-0012 (b), HIAM-0013 (c) and HIAM-0014 (d) after treatment under various conditions for 24 hours.



Figure S18. The FT-IR spectra of HIAM-0011 (a), HIAM-0012 (b), HIAM-0013 (c) and HIAM-0014 (d) after treatment under various conditions for 24 hours.



Figure S19. The transient fluorescence decay profiles of HIAM-0011, HIAM-0012, HIAM-0013 and HIAM-0014.



Figure S20. Mott-Schottky plots of HIAM-0011 (a), HIAM-0012 (b), HIAM-0013 (c) and HIAM-0014 (d).



Figure S21. The photocurrent responses of HIAM-0011, HIAM-0012, HIAM-0013 and HIAM-0014.



Figure S22. The control experiments of photocatalytic  $H_2$  evolution using HIAM-0011 as the photocatalysts.



Figure S23. The pH and various sacrificial agents effect on the photocatalytic hydrogen generation of HIAM-0011.



Figure S24. Mott-Schottky plots of protonated HIAM-0011 (a), HIAM-0012 (b), HIAM-0013

(c) and HIAM-0014 (d) using AA.



Figure S25. Wavelength dependent apparent quantum efficiency for photocatalytic hydrogen generation over HIAM-0011 under monochromatic light irradiation.



Figure S26. The PXRD patterns of HIAM-0011 (a), HIAM-0012 (b), HIAM-0013 (c) and HIAM-0014 (d) before and after photocatalytic experiments.



Figure S27. The FT-IR spectra of HIAM-0011 before and after photocatalytic measurement.



Figure S28. The SEM (a) and TEM (b) images of HIAM-0011 after photocatalytic measurement.



Figure S29. Energy dispersive X-ray analysis of HIAM-0011 after photocatalytic measurement.

| Space group: <i>pm</i><br>a = 39.5903 Å, b = 3.4526 Å, and c = 39.6079 Å.<br>α = γ = 90°, and β = 120° |         |          |         |  |
|--------------------------------------------------------------------------------------------------------|---------|----------|---------|--|
| Atom                                                                                                   | X       | y        | Z       |  |
| C1                                                                                                     | 0.62107 | -0.00000 | 0.58958 |  |
| C2                                                                                                     | 0.58493 | -0.00000 | 0.55389 |  |
| C3                                                                                                     | 0.55061 | -0.00000 | 0.55632 |  |
| C4                                                                                                     | 0.55077 | -0.00000 | 0.59181 |  |
| C5                                                                                                     | 0.58743 | -0.00000 | 0.62607 |  |
| C6                                                                                                     | 0.62347 | -0.00000 | 0.62663 |  |
| <b>C7</b>                                                                                              | 0.51278 | -0.00000 | 0.59309 |  |
| C8                                                                                                     | 0.58234 | -0.00000 | 0.51403 |  |
| С9                                                                                                     | 0.66308 | -0.00000 | 0.66524 |  |
| C10                                                                                                    | 0.66731 | -0.00000 | 0.70313 |  |
| C11                                                                                                    | 0.70319 | -0.00000 | 0.73720 |  |
| C12                                                                                                    | 0.73941 | -0.00000 | 0.73772 |  |
| C13                                                                                                    | 0.73555 | -0.00000 | 0.70013 |  |
| C14                                                                                                    | 0.69899 | -0.00000 | 0.66540 |  |
| C15                                                                                                    | 0.77996 | -0.00000 | 0.77523 |  |
| C16                                                                                                    | 0.78423 | -0.00000 | 0.81293 |  |
| C17                                                                                                    | 0.82040 | -0.00000 | 0.84777 |  |
| C18                                                                                                    | 0.85393 | -0.00000 | 0.84427 |  |
| C19                                                                                                    | 0.85263 | -0.00000 | 0.80803 |  |
| C20                                                                                                    | 0.81517 | -0.00000 | 0.77390 |  |
| C21                                                                                                    | 0.89045 | -0.00000 | 0.80650 |  |
| C22                                                                                                    | 0.82311 | -0.00000 | 0.88768 |  |
| C23                                                                                                    | 0.92758 | -0.00000 | 0.84113 |  |
| C24                                                                                                    | 0.96226 | -0.00000 | 0.84025 |  |
| C25                                                                                                    | 0.96193 | -0.00000 | 0.80470 |  |
| C26                                                                                                    | 0.92578 | -0.00000 | 0.77010 |  |
| C27                                                                                                    | 0.89066 | -0.00000 | 0.77080 |  |
| C28                                                                                                    | 0.61599 | -0.00000 | 0.50994 |  |
| C29                                                                                                    | 0.61287 | -0.00000 | 0.47298 |  |
| C30                                                                                                    | 0.57612 | -0.00000 | 0.43889 |  |
| C31                                                                                                    | 0.54282 | -0.00000 | 0.44234 |  |
| C32                                                                                                    | 0.54567 | -0.00000 | 0.47877 |  |

Table S1. Atomic coordinates of AA-stacking mode of the simulated HIAM-0011.

| C33        | 0.47576 | -0.00000 | 0.55844 |
|------------|---------|----------|---------|
| C34        | 0.44103 | -0.00000 | 0.55936 |
| C35        | 0.44143 | -0.00000 | 0.59502 |
| C36        | 0.47742 | -0.00000 | 0.62951 |
| <b>C37</b> | 0.51240 | -0.00000 | 0.62881 |
| C38        | 0.78935 | -0.00000 | 0.89173 |
| C39        | 0.79222 | -0.00000 | 0.92840 |
| C40        | 0.82875 | -0.00000 | 0.96244 |
| C41        | 0.86231 | -0.00000 | 0.95929 |
| C42        | 0.85972 | -0.00000 | 0.92290 |
| N43        | 0.99728 | -0.00000 | 0.80253 |
| C44        | 0.83324 | -0.00000 | 1.00167 |
| C45        | 0.57072 | -0.00000 | 0.39917 |
| N46        | 0.63791 | -0.00000 | 0.71074 |
| <b>S47</b> | 0.65242 | -0.00000 | 0.75852 |
| N48        | 0.69904 | -0.00000 | 0.76878 |
| C49        | 0.59216 | -0.00000 | 0.17024 |
| C50        | 0.55631 | -0.00000 | 0.17005 |
| C51        | 0.55838 | -0.00000 | 0.20673 |
| C52        | 0.59388 | -0.00000 | 0.24247 |
| C53        | 0.62832 | -0.00000 | 0.24050 |
| C54        | 0.62907 | -0.00000 | 0.20517 |
| C55        | 0.59515 | -0.00000 | 0.28177 |
| C56        | 0.51681 | -0.00000 | 0.13205 |
| C57        | 0.66768 | -0.00000 | 0.20446 |
| C58        | 0.70563 | -0.00000 | 0.23827 |
| C59        | 0.73964 | -0.00000 | 0.23650 |
| C60        | 0.73994 | -0.00000 | 0.20071 |
| C61        | 0.70230 | -0.00000 | 0.16690 |
| C62        | 0.66773 | -0.00000 | 0.16869 |
| C63        | 0.77717 | -0.00000 | 0.19750 |
| C64        | 0.81507 | -0.00000 | 0.23089 |
| C65        | 0.84958 | -0.00000 | 0.22911 |
| C66        | 0.84550 | -0.00000 | 0.19192 |
| C67        | 0.80916 | -0.00000 | 0.15713 |
| C68        | 0.77533 | -0.00000 | 0.16070 |
| C69        | 0.80738 | -0.00000 | 0.11773 |
| C70        | 0.88988 | -0.00000 | 0.26582 |
| C71        | 0.84196 | -0.00000 | 0.11533 |

| C72        | 0.84101 | -0.00000 | 0.07984 |
|------------|---------|----------|---------|
| C73        | 0.80544 | -0.00000 | 0.04450 |
| C74        | 0.77082 | -0.00000 | 0.04588 |
| C75        | 0.77159 | -0.00000 | 0.08172 |
| C76        | 0.51344 | -0.00000 | 0.09455 |
| C77        | 0.47682 | -0.00000 | 0.06000 |
| C78        | 0.44230 | -0.00000 | 0.06165 |
| C79        | 0.44506 | -0.00000 | 0.09817 |
| C80        | 0.48118 | -0.00000 | 0.13246 |
| C81        | 0.56051 | -0.00000 | 0.28400 |
| C82        | 0.56150 | -0.00000 | 0.31975 |
| C83        | 0.59723 | -0.00000 | 0.35520 |
| C84        | 0.63167 | -0.00000 | 0.35378 |
| C85        | 0.63090 | -0.00000 | 0.31808 |
| C86        | 0.89482 | -0.00000 | 0.30393 |
| C87        | 0.93191 | -0.00000 | 0.33730 |
| C88        | 0.96540 | -0.00000 | 0.33395 |
| C89        | 0.96139 | -0.00000 | 0.29697 |
| C90        | 0.92461 | -0.00000 | 0.26362 |
| N91        | 0.80336 | -0.00000 | 1.00704 |
| C92        | 1.00490 | -0.00000 | 0.36822 |
| N93        | 0.60001 | -0.00000 | 0.39298 |
| C94        | 0.40276 | -0.00000 | 0.02659 |
| N95        | 0.71334 | -0.00000 | 0.27535 |
| <b>S96</b> | 0.76122 | -0.00000 | 0.30872 |
| N97        | 0.77136 | -0.00000 | 0.27232 |
| C98        | 0.22997 | -0.00000 | 0.61657 |
| <b>C99</b> | 0.22980 | -0.00000 | 0.58074 |
| C100       | 0.19314 | -0.00000 | 0.54630 |
| C101       | 0.15762 | -0.00000 | 0.54597 |
| C102       | 0.15960 | -0.00000 | 0.58235 |
| C103       | 0.19509 | -0.00000 | 0.61854 |
| C104       | 0.11866 | -0.00000 | 0.50767 |
| C105       | 0.26721 | -0.00000 | 0.57856 |
| C106       | 0.19601 | -0.00000 | 0.65792 |
| C107       | 0.16228 | -0.00000 | 0.66201 |
| C108       | 0.16421 | -0.00000 | 0.69784 |
| C109       | 0.20011 | -0.00000 | 0.73406 |
| C110       | 0.23385 | -0.00000 | 0.73025 |

| C111 | 0.23188 | -0.00000 | 0.69382 |
|------|---------|----------|---------|
| C112 | 0.20350 | -0.00000 | 0.77461 |
| C113 | 0.17021 | -0.00000 | 0.77907 |
| C114 | 0.17197 | -0.00000 | 0.81536 |
| C115 | 0.20939 | -0.00000 | 0.84881 |
| C116 | 0.24423 | -0.00000 | 0.84722 |
| C117 | 0.24035 | -0.00000 | 0.80967 |
| C118 | 0.28414 | -0.00000 | 0.88475 |
| C119 | 0.13481 | -0.00000 | 0.81822 |
| C120 | 0.28738 | -0.00000 | 0.92208 |
| C121 | 0.32342 | -0.00000 | 0.95652 |
| C122 | 0.35853 | -0.00000 | 0.95581 |
| C123 | 0.35620 | -0.00000 | 0.91938 |
| C124 | 0.31989 | -0.00000 | 0.88452 |
| C125 | 0.30493 | -0.00000 | 0.61244 |
| C126 | 0.33896 | -0.00000 | 0.60970 |
| C127 | 0.33642 | -0.00000 | 0.57313 |
| C128 | 0.29971 | -0.00000 | 0.53962 |
| C129 | 0.26597 | -0.00000 | 0.54207 |
| C130 | 0.11699 | -0.00000 | 0.47105 |
| C131 | 0.08167 | -0.00000 | 0.43600 |
| C132 | 0.04611 | -0.00000 | 0.43567 |
| C133 | 0.04682 | -0.00000 | 0.47118 |
| C134 | 0.08221 | -0.00000 | 0.50654 |
| C135 | 0.09670 | -0.00000 | 0.78459 |
| C136 | 0.06298 | -0.00000 | 0.78766 |
| C137 | 0.06582 | -0.00000 | 0.82427 |
| C138 | 0.10283 | -0.00000 | 0.85767 |
| C139 | 0.13655 | -0.00000 | 0.85487 |
| N140 | 0.39659 | -0.00000 | 0.99097 |
| C141 | 0.03116 | -0.00000 | 0.82903 |
| N142 | 0.00884 | -0.00000 | 0.40023 |
| C143 | 0.37088 | -0.00000 | 0.56812 |
| N144 | 0.12516 | -0.00000 | 0.63253 |
| S145 | 0.09189 | -0.00000 | 0.64699 |
| N146 | 0.12842 | -0.00000 | 0.69366 |
| N147 | 0.40637 | -0.00000 | 0.59760 |
| H148 | 0.64726 | -0.00000 | 0.58825 |
| H149 | 0.52328 | -0.00000 | 0.53035 |

| H150 | 0.58687 | -0.00000 | 0.65209 |
|------|---------|----------|---------|
| H151 | 0.76041 | -0.00000 | 0.69604 |
| H152 | 0.70027 | -0.00000 | 0.63894 |
| H153 | 0.75972 | -0.00000 | 0.81618 |
| H154 | 0.88132 | -0.00000 | 0.87021 |
| H155 | 0.81367 | -0.00000 | 0.74632 |
| H156 | 0.93174 | -0.00000 | 0.87007 |
| H157 | 0.98900 | -0.00000 | 0.86806 |
| H158 | 0.92475 | -0.00000 | 0.74226 |
| H159 | 0.86424 | -0.00000 | 0.74281 |
| H160 | 0.64518 | -0.00000 | 0.53470 |
| H161 | 0.63924 | -0.00000 | 0.47113 |
| H162 | 0.51403 | -0.00000 | 0.41647 |
| H163 | 0.51793 | -0.00000 | 0.47743 |
| H164 | 0.47196 | -0.00000 | 0.52962 |
| H165 | 0.41426 | -0.00000 | 0.53158 |
| H166 | 0.47843 | -0.00000 | 0.65735 |
| H167 | 0.53840 | -0.00000 | 0.65707 |
| H168 | 0.75998 | -0.00000 | 0.86740 |
| H169 | 0.76573 | -0.00000 | 0.93004 |
| H170 | 0.89099 | -0.00000 | 0.98530 |
| H171 | 0.88736 | -0.00000 | 0.92397 |
| H172 | 0.86276 | -0.00000 | 1.02592 |
| H173 | 0.54103 | -0.00000 | 0.37514 |
| H174 | 0.59104 | -0.00000 | 0.14288 |
| H175 | 0.53217 | -0.00000 | 0.20766 |
| H176 | 0.65440 | -0.00000 | 0.26721 |
| H177 | 0.69796 | -0.00000 | 0.13787 |
| H178 | 0.64132 | -0.00000 | 0.14078 |
| H179 | 0.81869 | -0.00000 | 0.25888 |
| H180 | 0.87113 | -0.00000 | 0.19024 |
| H181 | 0.74767 | -0.00000 | 0.13458 |
| H182 | 0.87101 | -0.00000 | 0.14006 |
| H183 | 0.86886 | -0.00000 | 0.08115 |
| H184 | 0.74296 | -0.00000 | 0.01894 |
| H185 | 0.74366 | -0.00000 | 0.08015 |
| H186 | 0.53849 | -0.00000 | 0.09072 |
| H187 | 0.47557 | -0.00000 | 0.03207 |
| H188 | 0.41886 | -0.00000 | 0.10038 |

| H189 | 0.47949 | -0.00000 | 0.15866 |
|------|---------|----------|---------|
| H190 | 0.53173 | -0.00000 | 0.25872 |
| H191 | 0.53378 | -0.00000 | 0.31873 |
| H192 | 0.65957 | -0.00000 | 0.38072 |
| H193 | 0.65918 | -0.00000 | 0.32051 |
| H194 | 0.87088 | -0.00000 | 0.30947 |
| H195 | 0.93429 | -0.00000 | 0.36576 |
| H196 | 0.98700 | -0.00000 | 0.29373 |
| H197 | 0.92518 | -0.00000 | 0.23682 |
| H198 | 1.02903 | -0.00000 | 0.36285 |
| H199 | 0.37872 | -0.00000 | 0.03205 |
| H200 | 0.25749 | -0.00000 | 0.64282 |
| H201 | 0.19211 | -0.00000 | 0.51925 |
| H202 | 0.13283 | -0.00000 | 0.58151 |
| H203 | 0.26295 | -0.00000 | 0.75500 |
| H204 | 0.25972 | -0.00000 | 0.69530 |
| H205 | 0.14225 | -0.00000 | 0.75456 |
| H206 | 0.21124 | -0.00000 | 0.87634 |
| H207 | 0.26632 | -0.00000 | 0.80801 |
| H208 | 0.26274 | -0.00000 | 0.92646 |
| H209 | 0.32274 | -0.00000 | 0.98337 |
| H210 | 0.38279 | -0.00000 | 0.91793 |
| H211 | 0.32099 | -0.00000 | 0.85793 |
| H212 | 0.30925 | -0.00000 | 0.64151 |
| H213 | 0.36719 | -0.00000 | 0.63621 |
| H214 | 0.29694 | -0.00000 | 0.51095 |
| H215 | 0.23964 | -0.00000 | 0.51416 |
| H216 | 0.14224 | -0.00000 | 0.46768 |
| H217 | 0.08313 | -0.00000 | 0.40955 |
| H218 | 0.01961 | -0.00000 | 0.47148 |
| H219 | 0.07952 | -0.00000 | 0.53223 |
| H220 | 0.09139 | -0.00000 | 0.75517 |
| H221 | 0.03463 | -0.00000 | 0.76126 |
| H222 | 0.10581 | -0.00000 | 0.88640 |
| H223 | 0.16340 | -0.00000 | 0.88238 |
| H224 | 0.03670 | -0.00000 | 0.85860 |
| H225 | 0.36526 | -0.00000 | 0.53852 |

| Space group: <i>pm</i><br>a = 38.9114 Å, b = 3.4684 Å, and c = 37.9836 Å. |          |         |          |  |  |  |
|---------------------------------------------------------------------------|----------|---------|----------|--|--|--|
| $\alpha - \gamma - 90^{\circ}$ , and p - $00^{\circ}$                     |          |         |          |  |  |  |
| Atom                                                                      | X        | У       | Z        |  |  |  |
| C1                                                                        | -0.51920 | 0.00000 | -0.21986 |  |  |  |
| C2                                                                        | -0.51959 | 0.00000 | -0.18389 |  |  |  |
| C3                                                                        | -0.55630 | 0.00000 | -0.14959 |  |  |  |
| C4                                                                        | -0.59159 | 0.00000 | -0.14964 |  |  |  |
| C5                                                                        | -0.58923 | 0.00000 | -0.18606 |  |  |  |
| C6                                                                        | -0.55393 | 0.00000 | -0.22201 |  |  |  |
| C7                                                                        | -0.63086 | 0.00000 | -0.11185 |  |  |  |
| C8                                                                        | -0.48236 | 0.00000 | -0.18141 |  |  |  |
| C9                                                                        | -0.55363 | 0.00000 | -0.26108 |  |  |  |
| C10                                                                       | -0.58968 | 0.00000 | -0.26433 |  |  |  |
| C11                                                                       | -0.58760 | 0.00000 | -0.30217 |  |  |  |
| C12                                                                       | -0.54928 | 0.00000 | -0.33947 |  |  |  |
| C13                                                                       | -0.51778 | 0.00000 | -0.33457 |  |  |  |
| C14                                                                       | -0.51993 | 0.00000 | -0.29581 |  |  |  |
| C15                                                                       | -0.54513 | 0.00000 | -0.38029 |  |  |  |
| C16                                                                       | -0.57823 | 0.00000 | -0.38486 |  |  |  |
| C17                                                                       | -0.57676 | 0.00000 | -0.42084 |  |  |  |
| C18                                                                       | -0.53973 | 0.00000 | -0.45409 |  |  |  |
| C19                                                                       | -0.50490 | 0.00000 | -0.45267 |  |  |  |
| C20                                                                       | -0.50838 | 0.00000 | -0.41524 |  |  |  |
| C21                                                                       | -0.46561 | 0.00000 | -0.49039 |  |  |  |
| C22                                                                       | -0.61388 | 0.00000 | -0.42352 |  |  |  |
| C23                                                                       | -0.46323 | 0.00000 | -0.52731 |  |  |  |
| C24                                                                       | -0.42784 | 0.00000 | -0.56195 |  |  |  |
| C25                                                                       | -0.39257 | 0.00000 | -0.56189 |  |  |  |
| C26                                                                       | -0.39393 | 0.00000 | -0.52595 |  |  |  |
| C27                                                                       | -0.42966 | 0.00000 | -0.49080 |  |  |  |
| C28                                                                       | -0.44467 | 0.00000 | -0.21496 |  |  |  |
| C29                                                                       | -0.41085 | 0.00000 | -0.21188 |  |  |  |
| C30                                                                       | -0.41356 | 0.00000 | -0.17526 |  |  |  |
| C31                                                                       | -0.45027 | 0.00000 | -0.14211 |  |  |  |
| C32                                                                       | -0.48378 | 0.00000 | -0.14492 |  |  |  |

Table S2. Atomic coordinates of AA-stacking mode of the simulated HIAM-0012.

| C33  | -0.63334 | 0.00000 | -0.07496 |
|------|----------|---------|----------|
| C34  | -0.66904 | 0.00000 | -0.04042 |
| C35  | -0.70419 | 0.00000 | -0.04095 |
| C36  | -0.70255 | 0.00000 | -0.07681 |
| C37  | -0.66687 | 0.00000 | -0.11155 |
| C38  | -0.65167 | 0.00000 | -0.38985 |
| C39  | -0.68541 | 0.00000 | -0.39266 |
| C40  | -0.68291 | 0.00000 | -0.42901 |
| C41  | -0.64625 | 0.00000 | -0.46247 |
| C42  | -0.61248 | 0.00000 | -0.45994 |
| N43  | -0.35524 | 0.00000 | -0.59733 |
| C44  | -0.71765 | 0.00000 | -0.43334 |
| C45  | -0.37934 | 0.00000 | -0.16982 |
| N46  | -0.62470 | 0.00000 | -0.23515 |
| Se47 | -0.66344 | 0.00000 | -0.24901 |
| N48  | -0.62114 | 0.00000 | -0.29996 |
| C49  | -0.12896 | 0.00000 | -0.19180 |
| C50  | -0.16458 | 0.00000 | -0.15598 |
| C51  | -0.19926 | 0.00000 | -0.15783 |
| C52  | -0.19965 | 0.00000 | -0.19304 |
| C53  | -0.16336 | 0.00000 | -0.22740 |
| C54  | -0.12723 | 0.00000 | -0.22844 |
| C55  | -0.23770 | 0.00000 | -0.19415 |
| C56  | -0.16603 | 0.00000 | -0.11672 |
| C57  | -0.08827 | 0.00000 | -0.26730 |
| C58  | -0.08508 | 0.00000 | -0.30658 |
| C59  | -0.04720 | 0.00000 | -0.34238 |
| C60  | -0.00993 | 0.00000 | -0.34133 |
| C61  | -0.01484 | 0.00000 | -0.30495 |
| C62  | -0.05351 | 0.00000 | -0.26841 |
| C63  | 0.03092  | 0.00000 | -0.37790 |
| C64  | 0.03581  | 0.00000 | -0.41576 |
| C65  | 0.07213  | 0.00000 | -0.45000 |
| C66  | 0.10500  | 0.00000 | -0.44569 |
| C67  | 0.10318  | 0.00000 | -0.40934 |
| C68  | 0.06566  | 0.00000 | -0.37571 |
| C69  | 0.14067  | 0.00000 | -0.40745 |
| C70  | 0.07584  | 0.00000 | -0.49021 |
| C71  | 0.17768  | 0.00000 | -0.44187 |

|   | C72        | 0.21212  | 0.00000 | -0.44091 |
|---|------------|----------|---------|----------|
|   | C73        | 0.21185  | 0.00000 | -0.40550 |
|   | C74        | 0.17585  | 0.00000 | -0.37101 |
| ľ | C75        | 0.14082  | 0.00000 | -0.37179 |
|   | C76        | -0.13192 | 0.00000 | -0.11346 |
|   | <b>C77</b> | -0.13400 | 0.00000 | -0.07700 |
| ľ | <b>C78</b> | -0.17014 | 0.00000 | -0.04261 |
|   | C79        | -0.20386 | 0.00000 | -0.04529 |
|   | C80        | -0.20203 | 0.00000 | -0.08121 |
|   | C81        | -0.27452 | 0.00000 | -0.15961 |
|   | C82        | -0.30927 | 0.00000 | -0.16054 |
|   | C83        | -0.30898 | 0.00000 | -0.19612 |
|   | C84        | -0.27317 | 0.00000 | -0.23043 |
|   | C85        | -0.23829 | 0.00000 | -0.22971 |
|   | C86        | 0.04277  | 0.00000 | -0.49521 |
|   | <b>C87</b> | 0.04657  | 0.00000 | -0.53218 |
|   | C88        | 0.08339  | 0.00000 | -0.56553 |
|   | C89        | 0.11627  | 0.00000 | -0.56146 |
|   | C90        | 0.11276  | 0.00000 | -0.52477 |
| ľ | N91        | -0.75285 | 0.00000 | -0.40351 |
|   | C92        | 0.08863  | 0.00000 | -0.60493 |
|   | N93        | -0.34388 | 0.00000 | -0.19893 |
|   | C94        | -0.17468 | 0.00000 | -0.00326 |
|   | N95        | -0.11432 | 0.00000 | -0.31233 |
|   | Se96       | -0.10036 | 0.00000 | -0.36499 |
|   | N97        | -0.04933 | 0.00000 | -0.37376 |
|   | C98        | -0.93735 | 0.00000 | 0.16974  |
|   | C99        | -0.90163 | 0.00000 | 0.16971  |
|   | C100       | -0.90362 | 0.00000 | 0.20613  |
|   | C101       | -0.93863 | 0.00000 | 0.24163  |
|   | C102       | -0.97306 | 0.00000 | 0.23987  |
|   | C103       | -0.97405 | 0.00000 | 0.20469  |
|   | C104       | -0.93904 | 0.00000 | 0.28033  |
|   | C105       | -0.86213 | 0.00000 | 0.13237  |
|   | C106       | -1.01286 | 0.00000 | 0.20453  |
|   | C107       | -1.05212 | 0.00000 | 0.24058  |
|   | C108       | -1.08792 | 0.00000 | 0.23848  |
|   | C109       | -1.08685 | 0.00000 | 0.20013  |
|   | C110       | -1.05044 | 0.00000 | 0.16869  |

| C111  | -1.01391 | 0.00000 | 0.17086  |
|-------|----------|---------|----------|
| C112  | -1.12341 | 0.00000 | 0.19579  |
| C113  | -1.16121 | 0.00000 | 0.22867  |
| C114  | -1.19555 | 0.00000 | 0.22676  |
| C115  | -1.19134 | 0.00000 | 0.18944  |
| C116  | -1.15477 | 0.00000 | 0.15485  |
| C117  | -1.12121 | 0.00000 | 0.15891  |
| C118  | -1.15218 | 0.00000 | 0.11505  |
| C119  | -1.23556 | 0.00000 | 0.26376  |
| C120  | -1.18613 | 0.00000 | 0.11169  |
| C121  | -1.18435 | 0.00000 | 0.07575  |
| C122  | -1.14847 | 0.00000 | 0.04087  |
| C123  | -1.11451 | 0.00000 | 0.04331  |
| C124  | -1.11614 | 0.00000 | 0.07953  |
| C125  | -0.85830 | 0.00000 | 0.09483  |
| C126  | -0.82155 | 0.00000 | 0.06090  |
| C127  | -0.78756 | 0.00000 | 0.06342  |
| C128  | -0.79077 | 0.00000 | 0.09995  |
| C129  | -0.82691 | 0.00000 | 0.13354  |
| C130  | -0.90404 | 0.00000 | 0.28181  |
| C131  | -0.90415 | 0.00000 | 0.31694  |
| C132  | -0.93927 | 0.00000 | 0.35247  |
| C133  | -0.97409 | 0.00000 | 0.35191  |
| C134  | -0.97422 | 0.00000 | 0.31675  |
| C135  | -1.24000 | 0.00000 | 0.30168  |
| C136  | -1.27669 | 0.00000 | 0.33532  |
| C137  | -1.31046 | 0.00000 | 0.33264  |
| C138  | -1.30694 | 0.00000 | 0.29581  |
| C139  | -1.27045 | 0.00000 | 0.26211  |
| N140  | -1.14540 | 0.00000 | 0.00292  |
| C141  | -1.34972 | 0.00000 | 0.36740  |
| N142  | -0.94099 | 0.00000 | 0.38954  |
| C143  | -0.74809 | 0.00000 | 0.02921  |
| N144  | -1.05787 | 0.00000 | 0.27557  |
| Se145 | -1.11054 | 0.00000 | 0.31426  |
| N146  | -1.11929 | 0.00000 | 0.27198  |
| N147  | -0.74190 | 0.00000 | -0.00616 |
| H148  | -0.49175 | 0.00000 | -0.24606 |
| H149  | -0.55769 | 0.00000 | -0.12237 |

| H150 | -0.61575 | 0.00000 | -0.18537 |
|------|----------|---------|----------|
| H151 | -0.48860 | 0.00000 | -0.35887 |
| H152 | -0.49197 | 0.00000 | -0.29769 |
| H153 | -0.60597 | 0.00000 | -0.36067 |
| H154 | -0.53830 | 0.00000 | -0.48132 |
| H155 | -0.48239 | 0.00000 | -0.41357 |
| H156 | -0.48797 | 0.00000 | -0.53141 |
| H157 | -0.42909 | 0.00000 | -0.58846 |
| H158 | -0.36707 | 0.00000 | -0.52512 |
| H159 | -0.42811 | 0.00000 | -0.46449 |
| H160 | -0.44027 | 0.00000 | -0.24402 |
| H161 | -0.38266 | 0.00000 | -0.23815 |
| H162 | -0.45323 | 0.00000 | -0.11343 |
| H163 | -0.51013 | 0.00000 | -0.11727 |
| H164 | -0.60836 | 0.00000 | -0.07118 |
| H165 | -0.66815 | 0.00000 | -0.01371 |
| H166 | -0.72929 | 0.00000 | -0.07789 |
| H167 | -0.66912 | 0.00000 | -0.13743 |
| H168 | -0.65681 | 0.00000 | -0.36058 |
| H169 | -0.71350 | 0.00000 | -0.36624 |
| H170 | -0.64360 | 0.00000 | -0.49101 |
| H171 | -0.58590 | 0.00000 | -0.48746 |
| H172 | -0.71240 | 0.00000 | -0.46273 |
| H173 | -0.38506 | 0.00000 | -0.14023 |
| H174 | -0.10263 | 0.00000 | -0.19089 |
| H175 | -0.22635 | 0.00000 | -0.13170 |
| H176 | -0.16415 | 0.00000 | -0.25322 |
| H177 | 0.00936  | 0.00000 | -0.29993 |
| H178 | -0.05142 | 0.00000 | -0.24246 |
| H179 | 0.01170  | 0.00000 | -0.41959 |
| H180 | 0.13233  | 0.00000 | -0.47120 |
| H181 | 0.06384  | 0.00000 | -0.34800 |
| H182 | 0.18211  | 0.00000 | -0.47082 |
| H183 | 0.23864  | 0.00000 | -0.46865 |
| H184 | 0.17490  | 0.00000 | -0.34326 |
| H185 | 0.11441  | 0.00000 | -0.34400 |
| H186 | -0.10309 | 0.00000 | -0.13846 |
| H187 | -0.10734 | 0.00000 | -0.07580 |
| H188 | -0.23225 | 0.00000 | -0.01919 |

| H189 | -0.22992 | 0.00000 | -0.07942 |
|------|----------|---------|----------|
| H190 | -0.27796 | 0.00000 | -0.13097 |
| H191 | -0.33597 | 0.00000 | -0.13292 |
| H192 | -0.27223 | 0.00000 | -0.25818 |
| H193 | -0.21252 | 0.00000 | -0.25792 |
| H194 | 0.01329  | 0.00000 | -0.47142 |
| H195 | 0.02054  | 0.00000 | -0.53455 |
| H196 | 0.14510  | 0.00000 | -0.58694 |
| H197 | 0.14002  | 0.00000 | -0.52520 |
| H198 | 0.11810  | 0.00000 | -0.62902 |
| H199 | -0.20420 | 0.00000 | 0.02065  |
| H200 | -0.93626 | 0.00000 | 0.14239  |
| H201 | -0.87762 | 0.00000 | 0.20707  |
| H202 | -0.99883 | 0.00000 | 0.26663  |
| H203 | -1.04535 | 0.00000 | 0.13945  |
| H204 | -0.98793 | 0.00000 | 0.14285  |
| H205 | -1.16487 | 0.00000 | 0.25649  |
| H206 | -1.21696 | 0.00000 | 0.18755  |
| H207 | -1.09344 | 0.00000 | 0.13316  |
| H208 | -1.21517 | 0.00000 | 0.13613  |
| H209 | -1.21180 | 0.00000 | 0.07635  |
| H210 | -1.08645 | 0.00000 | 0.01688  |
| H211 | -1.08856 | 0.00000 | 0.07859  |
| H212 | -0.88308 | 0.00000 | 0.09063  |
| H213 | -0.81980 | 0.00000 | 0.03279  |
| H214 | -0.76494 | 0.00000 | 0.10271  |
| H215 | -0.82524 | 0.00000 | 0.15969  |
| H216 | -0.87551 | 0.00000 | 0.25654  |
| H217 | -0.87624 | 0.00000 | 0.31540  |
| H218 | -1.00151 | 0.00000 | 0.37907  |
| H219 | -1.00261 | 0.00000 | 0.31958  |
| H220 | -1.21599 | 0.00000 | 0.30701  |
| H221 | -1.27853 | 0.00000 | 0.36349  |
| H222 | -1.33271 | 0.00000 | 0.29295  |
| H223 | -1.27104 | 0.00000 | 0.23533  |
| H224 | -1.37386 | 0.00000 | 0.36213  |
| H225 | -0.72422 | 0.00000 | 0.03490  |

| Space group: <i>pm</i><br>a = 32.3412 Å, b = 3.4320 Å, and c = 27.2836 Å.<br>α = γ = 90°, and β = 90° |                     |          |         |  |  |  |  |
|-------------------------------------------------------------------------------------------------------|---------------------|----------|---------|--|--|--|--|
| Atom                                                                                                  | Atom x y z          |          |         |  |  |  |  |
| C1                                                                                                    | 0.13686             | -0.00000 | 0.75639 |  |  |  |  |
| C2                                                                                                    | 0.09403             | -0.00000 | 0.75920 |  |  |  |  |
| C3                                                                                                    | 0.07819             | -0.00000 | 0.80575 |  |  |  |  |
| C4                                                                                                    | 0.10372             | -0.00000 | 0.84838 |  |  |  |  |
| C5                                                                                                    | 0.14783             | -0.00000 | 0.84184 |  |  |  |  |
| C6                                                                                                    | 0.16677             | -0.00000 | 0.79405 |  |  |  |  |
| <b>C7</b>                                                                                             | 0.08311             | -0.00000 | 0.89851 |  |  |  |  |
| C8                                                                                                    | 0.06666             | -0.00000 | 0.71254 |  |  |  |  |
| С9                                                                                                    | 0.21549             | -0.00000 | 0.78208 |  |  |  |  |
| C10                                                                                                   | 0.24445             | -0.00000 | 0.82190 |  |  |  |  |
| C11                                                                                                   | 0.28723             | -0.00000 | 0.81834 |  |  |  |  |
| C12                                                                                                   | C12 0.30961 -0.0000 |          | 0.77405 |  |  |  |  |
| C13                                                                                                   | 0.28177             | -0.00000 | 0.72985 |  |  |  |  |
| C14                                                                                                   | 0.23593             | -0.00000 | 0.73361 |  |  |  |  |
| C15                                                                                                   | 0.35963             | -0.00000 | 0.77713 |  |  |  |  |
| C16                                                                                                   | 0.38504             | -0.00000 | 0.82147 |  |  |  |  |
| C17                                                                                                   | 0.42937             | -0.00000 | 0.82240 |  |  |  |  |
| C18                                                                                                   | 0.44918             | -0.00000 | 0.77708 |  |  |  |  |
| C19                                                                                                   | 0.42729             | -0.00000 | 0.73276 |  |  |  |  |
| C20                                                                                                   | 0.38422             | -0.00000 | 0.73537 |  |  |  |  |
| C21                                                                                                   | 0.44866             | -0.00000 | 0.68308 |  |  |  |  |
| C22                                                                                                   | 0.45562             | -0.00000 | 0.86989 |  |  |  |  |
| C23                                                                                                   | 0.49236             | -0.00000 | 0.67937 |  |  |  |  |
| C24                                                                                                   | 0.51131             | -0.00000 | 0.63373 |  |  |  |  |
| C25                                                                                                   | 0.48781             | -0.00000 | 0.59005 |  |  |  |  |
| C26                                                                                                   | 0.44471             | -0.00000 | 0.59271 |  |  |  |  |
| C27                                                                                                   | 0.42566             | -0.00000 | 0.63785 |  |  |  |  |
| C28                                                                                                   | 0.08407             | -0.00000 | 0.66515 |  |  |  |  |
| C29                                                                                                   | 0.05987             | -0.00000 | 0.62258 |  |  |  |  |
| C30                                                                                                   | 0.01699             | -0.00000 | 0.62468 |  |  |  |  |
| C31                                                                                                   | -0.00148            | -0.00000 | 0.67050 |  |  |  |  |
| C32                                                                                                   | 0.02283             | -0.00000 | 0.71377 |  |  |  |  |

Table S3. Atomic coordinates of AA-stacking mode of the simulated HIAM-0013.

|                    | C33        | 0.03921  | -0.00000 | 0.90216 |  |
|--------------------|------------|----------|----------|---------|--|
|                    | C34        | 0.01972  | -0.00000 | 0.94693 |  |
|                    | C35        | 0.04225  | -0.00000 | 0.99075 |  |
|                    | C36        | 0.08583  | -0.00000 | 0.98903 |  |
|                    | C37        | 0.10589  | -0.00000 | 0.94365 |  |
|                    | C38        | 0.43794  | -0.00000 | 0.91697 |  |
|                    | C39        | 0.46278  | -0.00000 | 0.95994 |  |
|                    | C40        | 0.50607  | -0.00000 | 0.95752 |  |
|                    | C41        | 0.52399  | -0.00000 | 0.91180 |  |
|                    | C42        | 0.49962  | -0.00000 | 0.86908 |  |
|                    | C43        | 0.53351  | -0.00000 | 0.00144 |  |
|                    | N44        | 0.01897  | -0.00000 | 0.03500 |  |
|                    | C45        | -0.00835 | -0.00000 | 0.57923 |  |
|                    | N46        | 0.23336  | -0.00000 | 0.86888 |  |
|                    | <b>S47</b> | 0.27280  | -0.00000 | 0.90982 |  |
|                    | N48        | 0.30533  | -0.00000 | 0.86307 |  |
|                    | C49        | 0.29654  | -0.00000 | 0.68038 |  |
|                    | C50        | 0.27243  | -0.00000 | 0.63829 |  |
|                    | C51        | 0.23131  | -0.00000 | 0.64147 |  |
| C52                |            | 0.21384  | -0.00000 | 0.68680 |  |
| C53                |            | 0.71821  | -0.00000 | 0.39767 |  |
| C54                |            | 0.73747  | -0.00000 | 0.44303 |  |
| C55                |            | 0.77873  | -0.00000 | 0.44634 |  |
| C56                |            | 0.80116  | -0.00000 | 0.40431 |  |
| N57                |            | 0.50885  | -0.00000 | 0.54418 |  |
| <b>N58</b> 0.80211 |            | -0.00000 | 0.22136  |         |  |
|                    | S59        | 0.76747  | -0.00000 | 0.17473 |  |
|                    | N60        | 0.72991  | -0.00000 | 0.21582 |  |
|                    | C61        | 0.49195  | -0.00000 | 0.50030 |  |
|                    | N62        | 0.51834  | -0.00000 | 0.04493 |  |
|                    | C63        | 0.03336  | -0.00000 | 0.07980 |  |
|                    | N64        | 0.00919  | -0.00000 | 0.53675 |  |
|                    | C65        | 0.99876  | -0.00000 | 0.21868 |  |
|                    | C66        | 0.02323  | -0.00000 | 0.16898 |  |
|                    | C67        | 1.00518  | -0.00000 | 0.13049 |  |
|                    | C68        | 0.96174  | -0.00000 | 0.12571 |  |
|                    | C69        | 0.93690  | -0.00000 | 0.16751 |  |
|                    | C70        | 0.60420  | -0.00000 | 0.14184 |  |
| <b>C71</b> 0.584   |            | 0.58442  | -0.00000 | 0.09543 |  |

|     | <b>C72</b> 0.54099 |          | -0.00000 | 0.09096 |  |
|-----|--------------------|----------|----------|---------|--|
|     | C73                | 0.51813  | -0.00000 | 0.13321 |  |
|     | C74                | 0.53747  | -0.00000 | 0.17929 |  |
|     | C75                | 0.52334  | -0.00000 | 0.36763 |  |
|     | C76                | 0.49923  | -0.00000 | 0.40955 |  |
|     | <b>C77</b>         | 0.51774  | -0.00000 | 0.45645 |  |
|     | <b>C78</b>         | 0.56076  | -0.00000 | 0.46088 |  |
|     | C79                | 0.58494  | -0.00000 | 0.41943 |  |
|     | C80                | 0.92698  | -0.00000 | 0.44611 |  |
|     | C81                | 0.94568  | -0.00000 | 0.49226 |  |
|     | C82                | 0.98860  | -0.00000 | 0.49774 |  |
|     | C83                | 0.01263  | -0.00000 | 0.44731 |  |
|     | C84                | -0.00617 | -0.00000 | 0.40034 |  |
|     | C85                | 0.95470  | -0.00000 | 0.21562 |  |
|     | C86                | 0.94998  | -0.00000 | 0.40236 |  |
|     | <b>C87</b>         | 0.88542  | -0.00000 | 0.34754 |  |
|     | C88                | 0.92833  | -0.00000 | 0.35171 |  |
|     | C89                | 0.94945  | -0.00000 | 0.30826 |  |
|     | C90                | 0.92878  | -0.00000 | 0.26204 |  |
|     | C91                | 0.88418  | -0.00000 | 0.26153 |  |
|     | C92                | 0.85996  | -0.00000 | 0.30568 |  |
| C93 |                    | 0.73843  | -0.00000 | 0.35112 |  |
| C94 |                    | 0.78443  | -0.00000 | 0.35459 |  |
| C95 |                    | 0.81018  | -0.00000 | 0.30989 |  |
| C96 |                    | 0.78584  | -0.00000 | 0.26602 |  |
|     | C97                | 0.74290  | -0.00000 | 0.26284 |  |
|     | C98                | 0.71570  | -0.00000 | 0.30310 |  |
|     | C99                | 0.56722  | -0.00000 | 0.37103 |  |
|     | C100               | 0.58130  | -0.00000 | 0.18550 |  |
|     | C101               | 0.66631  | -0.00000 | 0.29224 |  |
|     | C102               | 0.64602  | -0.00000 | 0.24445 |  |
|     | C103               | 0.60205  | -0.00000 | 0.23654 |  |
|     | C104               | 0.57728  | -0.00000 | 0.27815 |  |
|     | C105               | 0.59406  | -0.00000 | 0.32538 |  |
|     | C106               | 0.63717  | -0.00000 | 0.32963 |  |
|     | H107               | 0.14548  | -0.00000 | 0.72322 |  |
|     | H108               | 0.04566  | -0.00000 | 0.80782 |  |
|     | H109               | 0.16556  | -0.00000 | 0.87490 |  |
|     | H110               | 0.37217  | -0.00000 | 0.85630 |  |

| H111 | 0.48179  | -0.00000 | 0.77553  |  |
|------|----------|----------|----------|--|
| H112 | 0.37183  | -0.00000 | 0.70292  |  |
| H113 | 0.51304  | -0.00000 | 0.71088  |  |
| H114 | 0.54475  | -0.00000 | 0.63245  |  |
| H115 | 0.42493  | -0.00000 | 0.56027  |  |
| H116 | 0.39253  | -0.00000 | 0.63478  |  |
| H117 | 0.11642  | -0.00000 | 0.65816  |  |
| H118 | 0.07514  | -0.00000 | 0.58769  |  |
| H119 | -0.03486 | -0.00000 | 0.67289  |  |
| H120 | 0.00616  | -0.00000 | 0.74739  |  |
| H121 | 0.01780  | -0.00000 | 0.87156  |  |
| H122 | -0.01378 | -0.00000 | 0.94744  |  |
| H123 | 0.10477  | -0.00000 | 1.02221  |  |
| H124 | 0.13922  | -0.00000 | 0.94500  |  |
| H125 | 0.40507  | -0.00000 | 0.92211  |  |
| H126 | 0.44799  | -0.00000 | 0.99509  |  |
| H127 | 0.55735  | -0.00000 | 0.90891  |  |
| H128 | 0.51723  | -0.00000 | 0.83634  |  |
| H129 | 0.56654  | -0.00000 | -0.00353 |  |
| H130 | -0.04150 | -0.00000 | 0.58252  |  |
| H131 | 0.32516  | -0.00000 | 0.66506  |  |
| H132 | 0.28580  | -0.00000 | 0.60209  |  |
| H133 | 0.21267  | -0.00000 | 0.60767  |  |
| H134 | 0.18323  | -0.00000 | 0.67548  |  |
| H135 | 0.68804  | -0.00000 | 0.40830  |  |
| H136 | 0.72014  | -0.00000 | 0.47669  |  |
| H137 | 0.79349  | -0.00000 | 0.48266  |  |
| H138 | 0.83030  | -0.00000 | 0.42034  |  |
| H139 | 0.45881  | -0.00000 | 0.49463  |  |
| H140 | 0.06636  | -0.00000 | 0.08722  |  |
| H141 | 1.01662  | -0.00000 | 0.25229  |  |
| H142 | 0.05660  | -0.00000 | 0.17389  |  |
| H143 | 0.94689  | -0.00000 | 0.08969  |  |
| H144 | 0.90390  | -0.00000 | 0.16103  |  |
| H145 | 0.63747  | -0.00000 | 0.14200  |  |
| H146 | 0.60359  | -0.00000 | 0.06363  |  |
| H147 | 0.48465  | -0.00000 | 0.13042  |  |
| H148 | 0.51623  | -0.00000 | 0.20881  |  |
| H149 | 0.50638  | -0.00000 | 0.33321  |  |

| H150         | 0.46584             | -0.00000 | 0.40522 |  |
|--------------|---------------------|----------|---------|--|
| H151         | 0.57605             | -0.00000 | 0.49668 |  |
| H152         | 0.61754             | -0.00000 | 0.42780 |  |
| H153         | 0.89404             | -0.00000 | 0.44755 |  |
| H154         | 0.92563             | -0.00000 | 0.52322 |  |
| H155         | 0.04604             | -0.00000 | 0.45090 |  |
| H156 0.01439 |                     | -0.00000 | 0.36994 |  |
| H157 0.87292 |                     | -0.00000 | 0.37873 |  |
| H158 0.98210 |                     | -0.00000 | 0.31144 |  |
| H159         | 0.87021             | -0.00000 | 0.22612 |  |
| H160         | <b>H160</b> 0.66271 |          | 0.21209 |  |
| H161         | 0.54468             | -0.00000 | 0.27446 |  |
| H162         | 0.64580             | -0.00000 | 0.36366 |  |

| Space group: <i>pm</i><br>a = 32.3636 Å, b = 3.4552 Å, and c = 27.3428 Å.<br>α = γ = 90°, and β = 90° |             |          |         |  |
|-------------------------------------------------------------------------------------------------------|-------------|----------|---------|--|
| Atom                                                                                                  | X           | У        | Z       |  |
| C1                                                                                                    | 0.13589     | -0.00000 | 0.74555 |  |
| C2                                                                                                    | 0.09292     | -0.00000 | 0.74867 |  |
| C3                                                                                                    | 0.07644     | -0.00000 | 0.79531 |  |
| C4                                                                                                    | 0.10152     | -0.00000 | 0.83752 |  |
| C5                                                                                                    | 0.14546     | -0.00000 | 0.83065 |  |
| C6                                                                                                    | 0.16523     | -0.00000 | 0.78327 |  |
| <b>C7</b>                                                                                             | 0.08102     | -0.00000 | 0.88793 |  |
| C8                                                                                                    | 0.06603     | -0.00000 | 0.70235 |  |
| С9                                                                                                    | 0.21434     | -0.00000 | 0.77294 |  |
| C10                                                                                                   | 0.24286     | -0.00000 | 0.81609 |  |
| C11                                                                                                   | 0.28807     | -0.00000 | 0.81270 |  |
| C12                                                                                                   | 0.31138     | -0.00000 | 0.76566 |  |
| C13                                                                                                   | C13 0.28477 |          | 0.72402 |  |
| C14                                                                                                   | 0.23592     | -0.00000 | 0.72769 |  |
| C15                                                                                                   | 0.36126     | -0.00000 | 0.76854 |  |
| C16                                                                                                   | 0.38629     | -0.00000 | 0.81253 |  |
| C17                                                                                                   | 0.43063     | -0.00000 | 0.81287 |  |
| C18                                                                                                   | 0.45074     | -0.00000 | 0.76727 |  |
| C19                                                                                                   | 0.42902     | -0.00000 | 0.72345 |  |
| C20                                                                                                   | 0.38603     | -0.00000 | 0.72680 |  |
| C21                                                                                                   | 0.45024     | -0.00000 | 0.67340 |  |
| C22                                                                                                   | 0.45654     | -0.00000 | 0.85995 |  |
| C23                                                                                                   | 0.49384     | -0.00000 | 0.66835 |  |
| C24                                                                                                   | 0.51246     | -0.00000 | 0.62212 |  |
| C25                                                                                                   | 0.48859     | -0.00000 | 0.57935 |  |
| C26                                                                                                   | 0.44565     | -0.00000 | 0.58346 |  |
| C27                                                                                                   | 0.42702     | -0.00000 | 0.62903 |  |
| C28                                                                                                   | 0.08382     | -0.00000 | 0.65480 |  |
| C29                                                                                                   | 0.05987     | -0.00000 | 0.61260 |  |
| C30                                                                                                   | 0.01696     | -0.00000 | 0.61530 |  |
| C31                                                                                                   | 0.99805     | -0.00000 | 0.66490 |  |
| C32                                                                                                   | 0.02222     | -0.00000 | 0.70414 |  |
| <b>C33</b> 0.03725                                                                                    |             | -0.00000 | 0.89282 |  |

Table S4. Atomic coordinates of AA-stacking mode of the simulated HIAM-0014.

| C34                | 0.01806                 | -0.00000 | 0.93820 |  |
|--------------------|-------------------------|----------|---------|--|
| C35                | 0.04098                 | -0.00000 | 0.98116 |  |
| C36                | 0.08440                 | -0.00000 | 0.97801 |  |
| C37                | 0.10403                 | -0.00000 | 0.93223 |  |
| <b>C38</b> 0.43858 |                         | -0.00000 | 0.90722 |  |
| C39                | 0.46313                 | -0.00000 | 0.94979 |  |
| C40                | 0.50642                 | -0.00000 | 0.94678 |  |
| C41                | 0.52458                 | -0.00000 | 0.90082 |  |
| C42                | 0.50050                 | -0.00000 | 0.85852 |  |
| C43                | 0.53367                 | -0.00000 | 0.99040 |  |
| N44                | 0.01837                 | -0.00000 | 0.02606 |  |
| C45                | 0.99151                 | -0.00000 | 0.57397 |  |
| N46                | 0.22973                 | -0.00000 | 0.86046 |  |
| Se47               | 0.27090                 | -0.00000 | 0.90864 |  |
| N48                | 0.30617                 | -0.00000 | 0.85474 |  |
| C49                | 0.29988                 | -0.00000 | 0.67111 |  |
| C50                | 0.27658                 | -0.00000 | 0.63155 |  |
| C51                | 0.23337                 | -0.00000 | 0.63479 |  |
| C52                | 0.21485                 | -0.00000 | 0.67750 |  |
| C53                | 0.71524                 | -0.00000 | 0.38442 |  |
| <b>C54</b> 0.73398 |                         | -0.00000 | 0.42722 |  |
| C55                | 0.77720                 | -0.00000 | 0.43068 |  |
| C56                | <b>56</b> 0.80029 -0.00 |          | 0.39123 |  |
| N57                | 0.50905                 | -0.00000 | 0.53280 |  |
| N58                | 0.80566                 | -0.00000 | 0.20761 |  |
| Se59               | 0.77013                 | -0.00000 | 0.15354 |  |
| N60                | 0.72922                 | -0.00000 | 0.20153 |  |
| C61                | 0.49162                 | -0.00000 | 0.48972 |  |
| C62                | 0.03352                 | -0.00000 | 0.07005 |  |
| N63                | 0.00919                 | -0.00000 | 0.52754 |  |
| C64                | 0.00036                 | -0.00000 | 0.20153 |  |
| C65                | 0.02440                 | -0.00000 | 0.15950 |  |
| C66                | 0.00622                 | -0.00000 | 0.11333 |  |
| C67                | 0.96272                 | -0.00000 | 0.11344 |  |
| C68                | 0.93820                 | -0.00000 | 0.15577 |  |
| C69                | 0.60387                 | -0.00000 | 0.12915 |  |
| C70                | 0.58431                 | -0.00000 | 0.08312 |  |
| C71                | 0.54090                 | -0.00000 | 0.07939 |  |
| C72                | 0.51792                 | -0.00000 | 0.12203 |  |

| C73          | 0.53704                    | -0.00000         | 0.16769 |  |
|--------------|----------------------------|------------------|---------|--|
| C74          | 0.52219                    | -0.00000         | 0.35636 |  |
| C75          | 0.49822                    | -0.00000         | 0.39889 |  |
| C76          | <b>76</b> 0.51693 -0.00000 |                  | 0.44513 |  |
| C77          | 0.55985                    | -0.00000         | 0.44834 |  |
| C78          | 0.58381                    | -0.00000         | 0.40640 |  |
| C79          | 0.92705                    | -0.00000         | 0.43389 |  |
| C80          | 0.94566                    | -0.00000         | 0.47966 |  |
| C81          | 0.98859                    | -0.00000         | 0.48430 |  |
| C82          | 0.01266                    | -0.00000         | 0.43823 |  |
| C83          | 0.99385                    | -0.00000         | 0.39536 |  |
| C84          | 0.95620                    | -0.00000         | 0.20325 |  |
| C85          | 0.95026                    | -0.00000         | 0.38981 |  |
| C86          | 0.88603                    | -0.00000         | 0.33579 |  |
| C87          | 0.92900                    | -0.00000         | 0.33953 |  |
| C88          | 0.95062                    | -0.00000         | 0.29590 |  |
| C89          | 0.93039                    | -0.00000         | 0.25011 |  |
| C90          | 0.88603                    | -0.00000         | 0.25007 |  |
| C91          | 0.86116                    | -0.00000         | 0.29391 |  |
| C92          | 0.73607                    | -0.00000         | 0.33436 |  |
| C93          | 0.78493                    | -0.00000         | 0.33822 |  |
| C94          | 0.81131                    | -0.00000         | 0.29666 |  |
| C95          | 0.78776                    | -0.00000         | 0.24955 |  |
| C96          | <b>C96</b> 0.74255 -0      |                  | 0.24598 |  |
| C97          | 0.71425                    | 0.71425 -0.00000 |         |  |
| C98          | 0.56601                    | -0.00000         | 0.35864 |  |
| C99          | 0.58080                    | -0.00000         | 0.17314 |  |
| C100         | 0.66508                    | -0.00000 0.2785  |         |  |
| C101         | 0.64517                    | -0.00000 0.23109 |         |  |
| C102         | 0.60126                    | -0.00000         | 0.22380 |  |
| C103         | 0.57626                    | -0.00000         | 0.26575 |  |
| C104         | 0.59283                    | -0.00000         | 0.31258 |  |
| C105         | 0.63583                    | -0.00000         | 0.31610 |  |
| H106         | 0.14474                    | -0.00000         | 0.71219 |  |
| H107         | 0.04387                    | -0.00000         | 0.79798 |  |
| H108         | 0.16247                    | -0.00000         | 0.86340 |  |
| H109         | 0.37314                    | -0.00000         | 0.84749 |  |
| H110         | 0.48337                    | -0.00000         | 0.76509 |  |
| H111 0.37334 |                            | -0.00000         | 0.69511 |  |

| H112 | 0.51457 | -0.00000 | 0.69924 |
|------|---------|----------|---------|
| H113 | 0.54584 | -0.00000 | 0.61963 |
| H114 | 0.42559 | -0.00000 | 0.55185 |
| H115 | 0.39400 | -0.00000 | 0.62685 |
| H116 | 0.11629 | -0.00000 | 0.64753 |
| H117 | 0.07533 | -0.00000 | 0.57756 |
| H118 | 0.96468 | -0.00000 | 0.66780 |
| H119 | 0.00528 | -0.00000 | 0.73789 |
| H120 | 0.01591 | -0.00000 | 0.86271 |
| H121 | 0.98442 | -0.00000 | 0.94347 |
| H122 | 0.10363 | -0.00000 | 0.01004 |
| H123 | 0.13729 | -0.00000 | 0.93295 |
| H124 | 0.40569 | -0.00000 | 0.91278 |
| H125 | 0.44812 | -0.00000 | 0.98509 |
| H126 | 0.55793 | -0.00000 | 0.89742 |
| H127 | 0.51825 | -0.00000 | 0.82553 |
| H128 | 0.56669 | -0.00000 | 0.98484 |
| H129 | 0.95837 | -0.00000 | 0.57797 |
| H130 | 0.32865 | -0.00000 | 0.65516 |
| H131 | 0.28975 | -0.00000 | 0.59493 |
| H132 | 0.21609 | -0.00000 | 0.60046 |
| H133 | 0.18450 | -0.00000 | 0.66596 |
| H134 | 0.68493 | -0.00000 | 0.39575 |
| H135 | 0.71687 | -0.00000 | 0.46147 |
| H136 | 0.79056 | -0.00000 | 0.46737 |
| H137 | 0.82912 | -0.00000 | 0.40739 |
| H138 | 0.45848 | -0.00000 | 0.48529 |
| H139 | 0.06654 | -0.00000 | 0.07607 |
| H140 | 0.01815 | -0.00000 | 0.23470 |
| H141 | 0.05775 | -0.00000 | 0.16329 |
| H142 | 0.94768 | -0.00000 | 0.07798 |
| H143 | 0.90529 | -0.00000 | 0.14993 |
| H144 | 0.63712 | -0.00000 | 0.12880 |
| H145 | 0.60359 | -0.00000 | 0.05103 |
| H146 | 0.48448 | -0.00000 | 0.11987 |
| H147 | 0.51570 | -0.00000 | 0.19754 |
| H148 | 0.50525 | -0.00000 | 0.32242 |
| H149 | 0.46486 | -0.00000 | 0.39557 |
| H150 | 0.57529 | -0.00000 | 0.48359 |

| H151 | 0.61631 | -0.00000 | 0.41402 |  |
|------|---------|----------|---------|--|
| H152 | 0.89405 | -0.00000 | 0.43573 |  |
| H153 | 0.92558 | -0.00000 | 0.51102 |  |
| H154 | 0.04604 | -0.00000 | 0.44112 |  |
| H155 | 0.01475 | -0.00000 | 0.36110 |  |
| H156 | 0.87336 | -0.00000 | 0.36727 |  |
| H157 | 0.98327 | -0.00000 | 0.29842 |  |
| H158 | 0.87276 | -0.00000 | 0.21498 |  |
| H159 | 0.66208 | -0.00000 | 0.19852 |  |
| H160 | 0.54368 | -0.00000 | 0.26268 |  |
| H161 | 0.64470 | -0.00000 | 0.34961 |  |
| N162 | 0.51842 | -0.00000 | 0.03382 |  |

| Photocatalyst      | Illumination               | Sacrificial agent | Co-catalyst | $\begin{array}{c} H_2 \text{ Evolution Rate} \\ (\text{mmol} \cdot \text{g}^{-1} \cdot \text{h}^{-1}) \end{array}$ | Reference |  |
|--------------------|----------------------------|-------------------|-------------|--------------------------------------------------------------------------------------------------------------------|-----------|--|
| CTF-BT/Th-1        | λ≥420 nm                   | TEOA              | 3 wt% Pt    | 6.6                                                                                                                | [1]       |  |
| BT-TAPT-<br>COF    | λ≥420 nm                   | AA                | 8 wt% Pt    | 0.949                                                                                                              | [2]       |  |
| Py-ClTP-BT-<br>COF | $\lambda > 420 \text{ nm}$ | AA                | 5 wt% Pt    | 8.875                                                                                                              |           |  |
| Py-FTP-BT-<br>COF  | $\lambda > 420 \text{ nm}$ | AA                | 5 wt% Pt    | 2.875                                                                                                              | [3]       |  |
| Py-HTP-BT-<br>COF  | $\lambda > 420 \text{ nm}$ | AA                | 5 wt% Pt    | 1.078                                                                                                              |           |  |
| COF-F              | AM 1.5                     | AA                | 3 wt% Pt    | 10.581                                                                                                             |           |  |
| COF-C1             | AM 1.5                     | AA                | 3 wt% Pt    | 5.838                                                                                                              | [4]       |  |
| COF-H              | AM 1.5                     | AA                | 3 wt% Pt    | 5.034                                                                                                              |           |  |
| BTCOF150           | λ≥400 nm                   | TEOA              | 1 wt% Pt    | 0.75                                                                                                               | [5]       |  |
| NKCOF-108          | $\lambda > 420 \text{ nm}$ | AA                | 5 wt% Pt    | 11.6                                                                                                               | [6]       |  |
| 30%PEG@BT<br>-COF  | $\lambda > 420 \text{ nm}$ | AA                | 3.7 wt% Pt  | 11.14                                                                                                              | [7]       |  |
| USTB-7             | λ≥420 nm                   | AA                | 3 wt% Pt    | 4.3                                                                                                                | [8]       |  |
| USTB-8             | λ≥420 nm                   | AA                | 3 wt% Pt    | 13.7                                                                                                               | [0]       |  |
| TeTz-COF1          | $\lambda > 420 \text{ nm}$ | AA                | 4 wt% Pt    | 2.103                                                                                                              | [9]       |  |
| HPT-COF            | λ≥420 nm                   | AA                | 3 wt% Pt    | 3.8                                                                                                                | [10]      |  |
| BT-COF             | λ≥420 nm                   | AA                | 3 wt% Pt    | 0.68                                                                                                               |           |  |
|                    | 2 > 120                    | AA                | 5 wt% Pt    | 1.41                                                                                                               | [11]      |  |
| HIAM-0001          | $\lambda > 420 \text{ nm}$ | TEOA              | 12 wt% Pt   | 1.217                                                                                                              |           |  |
| HIAM-0011          | $\lambda > 420 \text{ nm}$ | AA                | 1 wt% Pt    | 16.98                                                                                                              | This work |  |

Table S5. The summary of benzothiadiazol-based COFs for photocatalytic hydrogen generation performance.

- W. Huang, Q. He, Y. Hu, Y. Li, Angewandte Chemie International Edition 2019, 58, 8676-8680.
- [2] G.-B. Wang, S. Li, C.-X. Yan, Q.-Q. Lin, F.-C. Zhu, Y. Geng, Y.-B. Dong, *Chemical Communications* 2020, 56, 12612-12615.
- [3] W. Chen, L. Wang, D. Mo, F. He, Z. Wen, X. Wu, H. Xu, L. Chen, *Angewandte Chemie International Edition* **2020**, *59*, 16902-16909.
- [4] M. Wang, Z. Wang, M. Shan, J. Wang, Z. Qiu, J. Song, Z. Li, *Chemistry of Materials* 2023, 35, 5368-5377.
- S. Ghosh, A. Nakada, M. A. Springer, T. Kawaguchi, K. Suzuki, H. Kaji, I. Baburin, A. Kuc, T. Heine, H. Suzuki, R. Abe, S. Seki, *Journal of the American Chemical Society* 2020, *142*, 9752-9762.
- [6] Z. Zhao, Y. Zheng, C. Wang, S. Zhang, J. Song, Y. Li, S. Ma, P. Cheng, Z. Zhang, Y.
  Chen, ACS Catalysis 2021, 11, 2098-2107.
- T. Zhou, L. Wang, X. Huang, J. Unruangsri, H. Zhang, R. Wang, Q. Song, Q. Yang, W.
  Li, C. Wang, K. Takahashi, H. Xu, J. Guo, *Nature Communications* 2021, *12*, 3934.
- [8] W. Li, X. Ding, B. Yu, H. Wang, Z. Gao, X. Wang, X. Liu, K. Wang, J. Jiang, Advanced Functional Materials 2022, 32, 2207394.
- [9] L. Hao, K. Huang, N. Wang, R. Shen, S. Chen, W. Bi, N. Li, P. Zhang, Y. Li, X. Li, *Dalton Transactions* 2022, 51, 14952-14959.
- [10] C. Lin, X. Liu, B. Yu, C. Han, L. Gong, C. Wang, Y. Gao, Y. Bian, J. Jiang, ACS Applied Materials & Interfaces 2021, 13, 27041-27048.

[11] C.-Q. Han, X. Sun, X. Liang, L. Wang, H. Hu, X.-Y. Liu, Journal of Materials Chemistry C 2023, 11, 12000-12006.