Supporting Information

"Cage-Confinement" Controlled Dimensionality Conversion of Bi₂O₂Se Crystals towards High-Performance Phototransistors

Kaiyi Zhang,^a Fang Wang^a, Lei Zheng, ^{*a} Junqing Wei^a, Yongxu Hu,^b Yangyang Xie,^a Hongling Guo,^a Fengpu Zhang^a, Xin Lin^a, Zewen Li^a, Tianling Ren^c, Zhitang Song^d and Kailiang Zhang^{*a}

^a, Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China. ^b Key Laboratory of Organic Integrated Circuits, Ministry of Education, Institute of Molecular Aggregation Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China

^c Beijing National Research Center for Information Science and Technology Institute of Microelectronics, Tsinghua University, Beijing 100084, China

^d Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.

*Corresponding authors.

E-mail address: leizheng@tju.edu.cn (Lei Zheng),

kailiang_zhang2007@163.com(Kailiang Zhang)

Keywords: Bi₂O₂Se crystal, controllable dimension, "cage-confinement" growth, van

der Waals integrated technique, photodetectors

Fig. S1. AFM images of Bi_2O_2Se nanowires at different growth time. a) 20 min sample. b) 30 min sample. c) 40 min sample. d) Statistical diagram of Bi_2O_2Se nanowire lengths.

Fig. S2. OM images of Bi₂O₂Se crystals during the process of dimensional transformation (from 1D crystalline nanowires to 2D nanosheets). a) < 500 μ m Active area with flow rate of \approx 100 sccm. b) > 500 μ m Active area with flow rate of \approx 50 sccm.

Fig. S3. Schematic illustration of the fabrication processes of Bi_2O_2Se -based FET. a) Incorporation of an OTS monolayer on the SiO_2 substrate. b) Mechanically transferring the Bi_2O_2Se single crystals with the help of probe. c) Stamping the source/drain electrodes onto the Bi_2O_2Se crystals with the help of probe. d) Schematic illustration of a bottom-gate-top-contact Bi_2O_2Se -based FET.

Fig. S4. Approximate value of Eg is calculated by a relationship known as the Tauc plot.

Fig. S5. (a, b) The I_{SD} output curves of 1D and 2D Bi₂O₂Se-based phototransistors under different light power densities conditions (measured at V_G = 60 V and V_{SD} = 1 V)

Fig. S6. Time-dependent photo-switching behaviors of Bi_2O_2Se nanoplate photodetector under the 450 nm laser illumination, $P = 260 \text{ mW/cm}^2$, bias voltage $V_{SD}= 1 \text{ V}$ and gate voltage $V_G = 20 \text{ V}$.

Fig. S7. (a, b) The *R* of Bi_2O_2Se nanowire/nanosheet devices at different light intensity levels, respectively. (c, d) The D^* of Bi_2O_2Se nanowire/nanosheet devices at different light intensity levels, respectively.

Fig. S8. (a, b) The I_{SD} transfer curves of 1D and 2D Bi₂O₂Se-based phototransistors under different light power densities conditions (measured at V_G = 60 V and V_{SD} = 1 V). (c, d) The *R* of Bi₂O₂Se 1D/2D devices at different light intensity levels, respectively.

Semiconductor	λ (nm)	Responsivity (A/W)	Ref.
Bi ₂ O ₂ Se nanosheet	360	75.14	[1]
Bi ₂ O ₂ Se nanosheet	360	108696	[2]
Bi ₂ O ₂ Se nanosheet	365	2.068	[3]
Bi ₂ O ₂ Se nanoplate	400	523	[4]
Bi ₂ O ₂ Se nanosheet	405	45134	[5]
Bi ₂ O ₂ Se nanosheet	405	43	[6]
Bi ₂ O ₂ Se nanosheet	405	50055	[2]
Bi ₂ O ₂ Se nanosheet	500	1.2	[7]
Bi ₂ O ₂ Se nanosheet	500	193	[7]
Bi ₂ O ₂ Se film	520	6.1	[8]
Bi ₂ O ₂ Se nanosheet	532	3 × 10 ³	[9]
Bi ₂ O ₂ Se nanosheet	532	2 × 10 ³	[10]
Bi ₂ O ₂ Se nanosheet	532	3.5 × 10 ⁴	[11]
Bi ₂ O ₂ Se nanosheet	532	45800	[12]
Bi ₂ O ₂ Se nanosheet	532	60	[13]
Bi ₂ O ₂ Se nanosheet	532	842.91	[14]
Bi ₂ O ₂ Se nanosheet	532	25505	[2]
Bi ₂ O ₂ Se nanoribbon	590	9.2×10 ⁶	[15]
Bi ₂ O ₂ Se nanosheet	635	44	[6]
Bi ₂ O ₂ Se nanosheet	640	9.1	[16]
Bi ₂ O ₂ Se film	640	3.8 × 10 ⁶	[17]
Bi ₂ O ₂ Se nanosheet	650	3.94	[3]
Bi ₂ O ₂ Se nanosheet	660	22100	[9]
Bi ₂ O ₂ Se nanosheet	808	6.5	[11]
Bi ₂ O ₂ Se nanosheet	808	843.5	[2]
Bi ₂ O ₂ Se nanowire	808	722.2	[19]

Table S1. Comparison of the responsivity of present Bi_2O_2Se -based photodetectors.

Semiconductor	λ (nm)	Responsivities (A/W)	Ref.
Bi ₂ O ₂ Se nanosheet	900	101	[18]
Bi ₂ O ₂ Se nanosheet	940	300	[21]
Bi ₂ O ₂ Se nanosheet	980	0.053	[3]
Bi ₂ O ₂ Se nanosheet	1200	65	[22]
Bi ₂ O ₂ Se nanosheet	1260	3.5	[07]
Bi ₂ O ₂ Se nanosheet	1310	118	[2]
Bi ₂ O ₂ Se nanosheet	1550	22.12	[2]
Bi ₂ O ₂ Se nanosheet	1550	58	[21]
Bi ₂ O ₂ Se nanowire	450	3× 10 ⁵	This work
Bi ₂ O ₂ Se nanosheet	450	7.4× 10 ⁴	This work

REFERENCES

- M.-Q. Li, L.-Y. Dang, G.-G. Wang, F. Li, M. Han, Z.-P. Wu, G.-Z. Li, Z. Liu, J.-C. Han, Bismuth Oxychalcogenide Nanosheet: Facile Synthesis, Characterization, and Photodetector Application, *Adv. Mater. Technol.*, 2020, 5(7), 2000180.
- T. Tong, Y. Chen, S. Qin, W. Li, J. Zhang, C. Zhu, C. Zhang, X. Yuan, X. Chen, Z. Nie,
 X. Wang, W. Hu, F. Wang, W. Liu, P. Wang, X. Wang, R. Zhang, Y. Xu, Sensitive and Ultrabroadband Phototransistor Based on Two-Dimensional Bi₂O₂Se Nanosheets, *Adv. Funct. Mater.*, 2019, **29**(50), 1905806.
- 3 X. Xue, C. Ling, H. Ji, J. Wang, C. Wang, H. Lu, W. Liu, Self-Powered and Broadband Bismuth Oxyselenide/p-Silicon Heterojunction Photodetectors with Low Dark Current and Fast Response, *ACS Appl. Mater. Interfaces*, 2023, **15**(4), 5411-5419.
- H. Wang, S. Zhang, X. Wu, H. Luo, J. Liu, Z. Mu, R. Li, G. Yuan, Y. Liang, J. Tan, Y. Ren, W. Lei, Bi₂O₂Se Nanoplates for Broadband Photodetector and Full-Color Imaging Applications, *Nano Res.*, 2023, 16(5), 7638-7645.
- M. Kang, H. Chai, H. B. Jeong, C. Park, I. Jung, E. Park, M. M. Çiçek, I. Lee, B. Bae,
 E. Durgun, J. Y. Kwak, S. Song, S. Choi, H. Y. Jeong, K. Kang, Low-Temperature and High-Quality Growth of Bi₂O₂Se Layered Semiconductors Via Cracking Metal-Organic Chemical Vapor Deposition, *ACS Nano*, 2021, **15**(5), 8715-8723.
- 6 L. Tao, S. Li, B. Yao, M. Xia, W. Gao, Y. Yang, X. Wang, N. Huo, Raman Anisotropy and Polarization-Sensitive Photodetection in 2D Bi₂O₂Se - WSe₂ Heterostructure, *ACS Omega*, 2021, **6**(50), 34763-34770.

- 7 J. Han, C. Fang, M. Yu, J. Cao, K. Huang, A High-Performance Schottky Photodiode with Asymmetric Metal Contacts Constructed on 2D Bi₂O₂Se, Adv. Electron. Mater., 2022, 8(7), 2100987.
- X. Pang, Y. Zhao, X. Gao, G. Wang, H. Sun, J. Yin, J. Zhu, Two-Step Colloidal Synthesis of Micron-Scale Bi₂O₂Se Nanosheets and Their Electrostatic Assembly for Thin-Film Photodetectors with Fast Response, *Chin. Chem. Lett.*, 2021, **32**(10), 3099-3104.
- U. Khan, Y. Luo, L. Tang, C. Teng, J. Liu, B. Liu, H.-M. Cheng, Controlled Vapor Solid Deposition of Millimeter Size Single Crystal 2D Bi₂O₂Se for
 High-Performance Phototransistors, *Adv. Funct. Mater.*, 2019, **29**(14), 1807979.
- 10 J. Wu, Y. Liu, Z. Tan, C. Tan, J. Yin, T. Li, T. Tu, H. Peng, Chemical Patterning of High-Mobility Semiconducting 2D Bi₂O₂Se Crystals for Integrated Optoelectronic Devices, *Adv. Mater.*, 2017, **29**(44), 1704060.
- Q. Fu, C. Zhu, X. Zhao, X. Wang, A. Chaturvedi, C. Zhu, X. Wang, Q. Zeng, J. Zhou,
 F. Liu, B. K. Tay, H. Zhang, S. J. Pennycook, Z. Liu, Ultrasensitive 2D Bi₂O₂Se
 Phototransistors on Silicon Substrates, *Adv. Mater.*, 2019, **31**(1), 1804945.
- 12 D. Li, X. Han, G. Xu, X. Lui, X. Zhao, G. Li, H. Hao, J. Dong, H. Liu, J. Xing, Bi₂O₂Se Photoconductive Detector with Low Power Consumption and High Sensitivity, *Acta. Physica. Sinica.*, 2020, **69**(24), 248502.
- X. Yang, Q. Zhang, Y. Song, Y. Fan, Y. He, Z. Zhu, Z. Bai, Q. Luo, G. Wang, G. Peng,M. Zhu, S. Qin, K. Novoselov, K. High Mobility Two-Dimensional Bismuth

Oxyselenide Single Crystals with Large Grain Size Grown by Reverse-Flow Chemical Vapor Deposition, *ACS Appl. Mater. Interfaces*, 2021, **13**(41), 49153-49162.

- 14 L. Dang, M. Liu, G. Wang, D. Zhao, J. Han, J. Zhu, Z. Liu, Organic Ion Template -Guided Solution Growth of Ultrathin Bismuth Oxyselenide with Tunable Electronic Properties for Optoelectronic Applications, *Adv. Funct. Mater.*, 2022, 32(31), 2201020.
- U. Khan, L. Tang, B. Ding, Y. Luo, S. Feng, W. Chen, M. J. Khan, B. Liu, H. M. Cheng,
 Catalyst Free Growth of Atomically Thin Bi₂O₂Se Nanoribbons for High Performance Electronics and Optoelectronics, *Adv. Funct. Mater.*, 2021, **31**(31)
 2101170.
- Y. Song, Z. Li, H. Li, S. Tang, M. Jiang, Highly Efficient Broadband Photodetectors Based on Lithography-Free Au/Bi₂O₂Se/Au Heterostructures, *Nanoscale*, 2019, 11(43), 20707-20714.
- 17 C. Hong, Y. Tao, A. Nie, M. Zhang, N. Wang, R. Li, J. Huang, Y. Huang, X. Ren, Y. Cheng, X. Liu, Inclined Ultrathin Bi₂O₂Se Films: a Building Block for Functional Van Der Waals Heterostructures, ACS Nano, 2020, **14**(12), 16803-16812.
- 18 J. Li, Z. Wang, Y. Wen, J. Chu, L. Yin, R. Cheng, L. Lei, P. He, C. Jiang, L. Feng, J. He, High - Performance Near - Infrared Photodetector Based on Ultrathin Bi₂O₂Se Nanosheets, *Adv. Funct. Mater.*, 2018, **28**(10), 1706437.

- H. Yang, W. Chen, X. Zheng, D. Yang, Y. Hu, X. Zhang, X. Ye, Y. Zhang, T. Jiang, G.
 Peng, X. Zhang, R. Zhang, C. Deng, S. Qin, Near-Infrared Photoelectric Properties of Multilayer Bi₂O₂Se Nanofilms, *Nanoscale Res. Lett.* 2019, **14**, 371.
- J. Li, Z. Wang, J. Chu, Z. Cheng, P. He, J. Wang, L. Yin, R. Cheng, N, Li, Y. Wen, J.
 He, Oriented Layered Bi₂O₂Se Nanowire Arrays for Ultrasensitive Photodetectors,
 Appl. Phys. Lett. 2019, **114**(15), 151104.
- Y. Chen, W. Ma, C. Tan, M. Luo, W. Zhou, N. Yao, H. Wang, L. Zhang, T. Xu, T. Tong, Y. Zhou, Y. Xu, C. Yu, C. Shan, H. Peng, F. Yue, P. Wang, Z. Huang, W. Hu, Broadband Bi₂O₂Se Photodetectors from Infrared to Terahertz, *Adv. Funct. Mater.*, 2021, **31**(14), 2009554.
- J. Yin, Z. Tan, H. Hong, J. Wu, H. Yuan, Y. Liu, C. Chen, C. Tan, F. Yao, T. Li, Y. Chen,
 Z. Liu, K. Liu, H. Peng, Ultrafast and Highly Sensitive Infrared Photodetectors
 Based on Two-Dimensional Oxyselenide Crystals, *Nat. Commun.*, 2018, 9(1),
 3311.