Electronic supplementary information

Smart Emissive Hybrid Dynamer and Nanocomposite Made of Complementary Organic and Inorganic Emitters Combined *via* a Supramolecular Janus Synthon

Ilya V. Kashnik,^{a,b} Jeanne Rebours,^a Noée Dumait,^a Konstantin A. Brylev,^b and Yann Molard^{*,a}

 [a] I. V. Kashnik, Jeanne Rebours, Noée Dumait, Pr. Yann Molard Université de Rennes, CNRS, ISCR – UMR 6226, ScanMAT – UAR 2025, Rennes F-35000, France E-mail: yann.molard@univ-rennes.fr

[b] I. V. Kashnik, Pr. K.A. Brylev
Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev ave., 630090 Novosibirsk, Russian Federation

Table of contents

1.	NMR spectra	S2
2.	Binding constant determination	.S10
2.1.	Binding constant for DAPImBr and An-Th	.S10
2.2.	Binding constant for (DAPIm) $_2$ Mo $_6$ and An-Th	.S10
2.3.	Evidence of binding between (DAPIm) $_2$ Mo $_6$ and Th-An-Th	.S11
3.	Absorption spectra	.S12
4.	Emission decay profiles	.S13
5.	Emission spectra	.S19
6.	Förster radius determination	.S20
7.	Emission titration data	.S21
8.	Emission evolution in vacuum	.S23

1. NMR spectra

Figure S2. 101 MHz $^{\rm 13}C$ NMR spectrum in CDCl3 of 2

Figure S4. 101 MHz ^{13}C NMR spectrum in CDCl3 of 3

Figure S5. 400 MHz ¹H NMR spectrum in CDCl₃ of DAPImBr

Figure S6. 101 MHz $^{\rm 13}{\rm C}$ NMR spectrum in CDCl3 of DAPImBr

Figure S7. 400 MHz 1 H NMR spectrum in CDCl₃ of 5

Figure S8. 500 MHz ¹H NMR spectrum in CDCl₃ of An-Th

Figure S10. 400 MHz ^1H NMR spectrum in CDCl3 of 7

Figure S12. 400 MHz ¹H NMR spectrum in CD₃OD of Th-An-Th

Figure S13. 101 MHz ¹³C NMR spectrum in CD₃OD of Th-An-Th

Figure S14. 400 MHz ¹H NMR spectrum in CD₂Cl₂ of (DAPIm)₂Mo₆

Figure S16. Comparison of ¹H NMR spectra in $CDCl_3$ of DAPImBr (black line, C = 4.3·10⁻⁵M) and (DAPIm)₂Mo₆ (red line, C = 4.5·10⁻⁶M)

2. Binding constant determination

2.1. Binding constant for DAPImBr and An-Th

Nº	[DAPIm⁺], M	[An-Th], M	[An-Th]/[DAPIm⁺]	NH-1, ppm	NH-2, ppm	K, M ⁻¹
1	9.86.10-4	0	0	8.32	8.98	
2	9.86.10-4	9.77·10 ⁻⁴	0.99	8.66	9.23	
3	9.86.10-4	1.91·10 ⁻³	1.94	8.91	9.40	
4	9.86.10-4	2.79·10 ⁻³	2.83	9.09	9.52	
5	9.86.10-4	3.64·10 ⁻³	3.69	9.23	9.61	
6	9.86.10-4	4.45·10 ⁻³	4.51	9.33	9.68	261±2
7	9.86.10-4	5.23·10 ⁻³	5.30	9.42	9.74	
8	9.86.10-4	6.68·10 ⁻³	6.77	9.55	9.82	
9	9.86.10-4	8.01·10 ⁻³	8.12	9.64	9.89	
10	9.86.10-4	9.24·10 ⁻³	9.37	9.70	9.93	
11	9.86.10-4	1.09.10-2	11.05	9.78	9.98	

Table S1. NMR titration data for determination of binding constant in $CDCI_3$ between DAPImBr and An-Th

2.2. Binding constant for (DAPIm)₂Mo₆ and An-Th

Table S2. NMR titration data for determination of binding constant in CDCl₃ between (DAPIm)₂Mo₆ and An-Th

Nº	[DAPIm⁺], M	[An-Th], M	[An-Th]/[DAPIm⁺]	NH-1, ppm	NH-2, ppm	K, M ⁻¹
1	1.03·10 ⁻³	0	0	7.81	8.17	
2	1.03·10 ⁻³	9.39·10 ⁻⁴	0.91	8.36	8.68	
3	1.03·10 ⁻³	1.83·10 ⁻³	1.78	8.74	9.01	
4	1.03·10 ⁻³	2.69·10 ⁻³	2.61	9.00	9.23	
5	1.03.10-3	3.50·10 ⁻³	3.40	9.18	9.40	
6	1.03·10 ⁻³	4.23·10 ⁻³	4.11	9.31	9.52	420+2
7	1.03·10 ⁻³	5.02·10 ⁻³	4.87	9.42	9.61	420±3
8	1.03·10 ⁻³	6.42·10 ⁻³	6.23	9.56	9.74	
9	1.03·10 ⁻³	7.70·10 ⁻³	7.48	9.66	9.83	
10	1.03·10 ⁻³	8.88·10 ⁻³	8.62	9.73	9.89	
11	1.03·10 ⁻³	9.98·10 ⁻³	9.69	9.78	9.93	
12	1.03·10 ⁻³	1.24·10 ⁻²	12.04	9.87	10.00	

Figure S17. 500 MHz ¹H NMR spectra in CDCl₃ in the titration experiment with $(DAPIm)_2Mo_6$ (C = 1.03·10⁻³M) and An-Th (values on the left are referred to the [An-Th]/[DAPIm⁺] ratio)

2.3. Evidence of binding between (DAPIm)₂Mo₆ and Th-An-Th

Figure S18. 500 MHz ¹H NMR spectra in CDCl₃ in the titration experiment with (DAPIm)₂Mo₆ (C = $9.07 \cdot 10^{-5}$ M) and Th-An-Th (values on the left are referred to the [Th-An-Th]/[DAPIm⁺] ratio)

3. Absorption spectra

Figure S19. Absorption spectra in CH₃CN of DAPImBr (black line), An-Th (blue line) and (DAPIm)₂Mo₆ (red)

Figure S20. Absorption spectra in CH₃CN of DAPIm₂Mo₆ (red) + 1 equiv An-Th (blue) + excess of AnTh (green)

4. Emission decay profiles

Figure S21. Emission decay profile of An-Th in CHCl₃ (λ_{ex} = 375 nm)

Figure S22. Emission decay profile of **Th-An-Th** in solid (λ_{ex} = 375 nm)

Figure S23. Emission decay profile of (DAPIm)₂Mo₆ in deaerated (Ar) CHCl₃ (λ_{ex} = 375 nm)

Figure S24. Emission decay profile of $(DAPIm)_2Mo_6$ in solid (λ_{ex} = 375 nm)

Figure S25. Emission decay profile of solid (An-Th:DAPIm)₂Mo₆ (λ_{ex} = 375 nm)

Figure S27. Emission decay profile of (DAPIm)₂Mo₆ in PMMA (λ_{ex} = 375 nm)

Figure S28. Emission decay profile of Th-An-Th:(DAPIm)₂Mo₆ in PMMA (λ_{ex} = 375 nm, Th-An-Th component)

Figure S29. Emission decay profile of Th-An-Th:(DAPIm)₂Mo₆ in PMMA (λ_{ex} = 375 nm, Mo₆ component)

Figure S30. Emission decay profile of Th-An-Th:(DAPIm)₂Mo₆ in PMMA in vacuum (λ_{ex} = 375 nm, Th-An-Th component)

Figure S31. Emission decay profile of Th-An-Th:(DAPIm)₂Mo₆ in PMMA in vacuum (λ_{ex} = 375 nm, Mo₆ component)

5. Emission spectra

Figure S32. Emission spectra (λ_{ex} = 375 nm) of An-Th (black line) and Th-An-Th (blue line) in solid state

Figure S33. Emission spectrum (λ_{ex} = 375 nm) of (DAPIm)₂Mo₆ in solid state

6. Förster radius determination

Figure S34. Representation of crossing of absorption spectrum of $(DAPIm)_2Mo_6$ in CHCl₃ and emission spectrum of An-Th in CHCl₃

The following Forster rate equation describes the energy transfer by dipolar interaction:

$$k = \frac{1}{\tau_D} (\frac{R_0}{r})^6$$
, $R_0^6 = 8.785 \times 10^{-5} \frac{K^2 \Phi_D J}{n^4}$

Where τ_D is the donor lifetime in the absence of acceptor, r is the donor-acceptor distance, and R_0 is the Förster distance at which the energy transfer rate is equal to the decay rate. The Förster distance is related to the orientation factor, K^2 between donor and acceptor, and the donor and acceptor spectroscopic properties. K was taken as 2/3 that is appropriate for dynamic random orientation averaging of the donor and acceptor. Φ_D is the quantum yield of the donor in the absence of an acceptor (0.44 for An-Th). The index of refraction, n, is the index of refraction of CHCl₃: 1.4458. *J* is the overlap integral between the donor and acceptor that is calculated using the following equation:

$$J = \int_{0}^{+\infty} F_{D}(\lambda) \varepsilon_{A}(\lambda) \lambda^{4} d\lambda$$

Where F_D is the area-normalized fluorescence spectrum of the donor,^[1] ε_A is the molar absorption coefficient of the acceptor. The scaling constant is set such that when ε is in units of M⁻¹.cm⁻¹ and wavelength in units of nm, the Förster distance is in units of Å.^[2]

The Förster radius was evaluated at 298K.

7. Emission titration data

Figure S35. Emission spectra of An-Th (C = $1.23 \cdot 10^{-5}$ M in CHCl₃) upon addition of aliquots of (DAPIm)₂Mo₆

[(DAPIm)₂Mo ₆]/[An-Th]	τ ₁ , ns (A)	τ ₂ , ns (A)	τ _{av} , ns
0.4	5.8	-	5.8
0.7	10 (18 %)	5.1 (82 %)	6.6
1.8	7.9 (44 %)	3.7 (56 %)	6.3
3.4	8.3 (39 %)	3.8 (61 %)	6.4

Table S3. Anthracene excited state lifetime evolution ([An-Th] = $1.23 \cdot 10^{-5}$ M) upon addition of (DAPIm)₂Mo₆ in CHCl₃

Figure S36. Emission decay profile of mixture of (DAPIm)₂Mo₆ and An-Th in CHCl₃ ([(DAPIm)₂Mo₆]/[An-Th] = 0.4)

Figure S37. Emission decay profile of mixture of (DAPIm)₂Mo₆ and An-Th in CHCl₃ ([(DAPIm)₂Mo₆]/[An-Th] = 0.7)

Figure S38. Emission decay profile of mixture of (DAPIm)₂Mo₆ and An-Th in CHCl₃ ([(DAPIm)₂Mo₆]/[An-Th] = 1.8)

Figure S39. Emission decay profile of mixture of (DAPIm)₂Mo₆ and An-Th in CHCl₃ ([(DAPIm)₂Mo₆]/[An-Th] = 3.4)

8. Emission evolution in vacuum 12.0 140000-11.5 11.0 120000 668^{/1}440 10.5 10.0 Intensity / a.u. 100000 9.5 9.0 80000 8.5 8.0 60000 100 150 200 250 0 50 300 Irradiation Time / s 40000 20000 0 500 600 700 800 900 1000 400 Wavelength / nm

Figure S40. Evolution of emission spectra of Th-An-Th:(DAPIm)₂Mo₆ under 5 min laser irradiation in vacuum (λ_{ex} = 375 nm, laser diode, 100 MHz, 100 ms int. time, 1.9·10⁻⁶ hPa)

- [1] J. R. Lakowicz, *Principles of Fluorescence Spectroscopy, third edition*, Springer, Boston, MA, **2006**.
- [2] P. G. Wu, L. Brand, Anal. Biochem. 1994, 218, 1-13.