Highly Efficient and Stable Cs₄PbBr₆@KBr Color Conversion

Films Constructed through Inkjet Printing Technology

Yue Zhai¹, Kecheng Dai¹, Tongtong Xuan², Wenhao Bai², Shuchen Shi², Hong Zhang¹, Rongjun Xie^{2*} and Le Wang^{1*}

- 1. College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, P. R. China;
- 2. State Key Laboratory of Physical Chemistry of Solid Surface, College of Materials, Xiamen University, Xiamen 361005, P. R. China

Corresponding Authors *E-mail: rjxie@xmu.edu.cn, calla@cjlu.edu.cn

Figure S1. (a) Inkjet printing ink droplets; (b) Driving voltage diagrams and (c) Schematic diagram of droplet variation with driving voltage.

Figure S2 (a) SEM image and (b-d) the corresponding EDS elemental mapping images of perovskite prepared without introducing of KBr.

Figure S3 (a) SEM image and (b-e) the corresponding EDS elemental mapping images of $Cs_4PbBr_6@KBr$ composite.

Figure S4 (a) TEM and (b-d) HR-TEM images of Cs₄PbBr₆@KBr composite.

Figure S5. (a) UV-Vis absorption (dotted lines), photoluminescence spectra (solid lines) and (b) XRD patterns of KBr coated perovskite CCFs prepared with different PbBr₂ and CsBr ratios.

Figure S6 Photoluminescence decay curves of KBr coated perovskite CCFs printed with different ratio of $PbBr_2$ to CsBr.

	$\tau_1(ns)$	A ₁ (%)	τ_2 (ns)	A ₂ (%)	$\tau_{avg}(ns)$	non-radiative
						recombination rate (s ⁻¹)
2:1	3.9	49.25	17.9	50.75	15.5	5.6×10 ⁷
1:1	5.9	55.89	20.6	44.11	16.7	3.9×10 ⁷
1:2	6.2	45.62	22.6	54.38	19.5	2.3×10 ⁷
1:2.5	6.3	39.66	24.7	60.34	22.1	1.6×10 ⁷
1:3	5.0	38.98	18.4	61.02	16.4	4.1×10 ⁷

Table S1 Emission decay curves fitting results of KBr coated perovskite CCFs with different ratio of $PbBr_2$ to CsBr

	$\tau_1(ns)$	A ₁ (%)	τ_2 (ns)	$A_2(\%)$	$\tau_{avg}(ns)$
50°C	6.5	40.33	21.3	59.67	18.8
60°C	6.3	39.66	24.7	60.34	22.1
70°C	6.2	25.41	28.9	74.59	27.4
80°C	6.8	30.45	32.9	69.55	30.7
90°C	6.8	24.59	33.5	75.41	31.8
100°C	7.0	20.49	35.9	79.51	34.5

Table S2 Emission decay curves fitting results of $Cs_4PbBr_6@KBr$ CCFs with different substrate temperature

Material	Temperature	Time	Stability	Reference
Cs ₄ PbBr ₆ @KBr CCFs	70 °C	16 h	PL intensity maintains about 65%	This Work
dual-phase Cs ₄ PbBr ₆ MCs/CsPbBr ₃ NCs composites film	373 K	240 min	PL intensity reduces to 80%	1
Cs ₄ PbBr ₆ micro-disks (MDs)	85°C	6 h	PLQY remaines about 62.5%	2
Cs ₄ PbBr ₆ -Zn(moi) ₂	100 °C	6 h	PL emission intensity maintains around 95%	3
FAPbBr ₃ /Cs4PbBr ₆ NCs film	60 °C	96 h	PL intensity decreased by 45%	4
N-GQD/CsPbBr ₃ composite	100 °C	2 h	PL emission intensity retains 10%	5
DDAB/ZnBr ₂ -treated CsPbBr ₃ NCs	50 °C	60 min	PL intensity preserved ~90%	6
CsPbBr ₃ PQDs film	100 °C	15 min	almost completely lose their PL	7

Table S3 Summarized thermal stability of previously reported materials

References

1. Q. Wang, W. Wu, R. Wu, S. Yang, Y. Wang, J. Wang, Z. Chai and Q. Han, *Journal of Colloid and Interface Science*, 2019, 554, 133-141.

2. H. H. Zhang, Q. Liao, Y. S. Wu, J. W. Chen, Q. G. Gao and H. B. Fu, Physical

Chemistry Chemical Physics, 2017, 19, 29092-29098.

3. X. X. Feng, P. X. Xu, J. L. Liu, X. Y. Zhao, J. Cao and J. C. Liu, *Inorganic Chemistry*, 2022, 61, 17590-17598.

4. Y. Zeng, W. Chen, Y. Deng, W. Gu, C. Wu, Y. Guo, P. Huang, F. Liu and H. Li, *ACS Applied Nano Materials*, 2022, 5, 9534-9543.

5. Z. Xue, H. Gao, W. Liu and X. Li, ACS Applied Electronic Materials, 2019, 1, 2244-2252.

Y. Zhang, G. Hou, Y. Wu, M. Chen, Y. Dai, S. Liu, Q. Zhao, H. Lin, J. Fang, C. Jing and J. Chu, *Langmuir*, 2023, 39, 6222-6230.

7. Y. Cai, L. Wang, T. Zhou, P. Zheng, Y. Li and R.-J. Xie, *Nanoscale*, 2018, 10, 21441-21450.