Supporting Information

Defects and self-trapped excitons regulation in rare-earth doped all-inorganic perovskite

Anshi Chu,‡^a Jun Luo,‡^a Zheyuan Xu,^b Yunfei Xie,^b Wenjie Luo,^b Siyao Li,^a Jieyuan Liang,^a Junyu He,^a Chi Zhang,^a Mengqiu Cai,^a Xiujuan Zhuang*^c

a. School of Physics and Electronics, Hunan University, Changsha 410082, China. Email: mqcai@hnu.edu.cn

b. College of Materials Science and Engineering, School of Physics and Electronic
 Science, Hunan University, Changsha 410082, China

c. College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China. Email: zhuangxj@hnu.edu.cn

‡ These authors contributed equally to this work.

* Corresponding authors (Email: zhuangxj@hnu.edu.cn)

The supporting information includes Figures S1-S13

Supporting Information Catalog

1, Materials Growth	2
2, Materials Characterizations	3
3, Optical characterization of undoped and Er-doped CsPbBr _{3x} Cl _{3(1-x)}	5
4, Dynamics analysis for the undoped- and Er-doped CsPbCl _{3x} Br _{3(1-x)}	6
5, Power-dependent PL spectra for 1.02% Er-doped CsPbCl _{3x} Br _{3(1-x)}	8
6, Computational Methods	9

1, Materials Growth

Figure S1. Schema of chemical vapor deposition setup of (a) undoped- and (b) Erdoped $CsPbCl_{3x}Br_{3(1-x)}$.

Distance to Furnace Tube Center (cm)	Temperature (°C)	Distance to Furnace Tube Center (cm)	Temperature (°C)
0	832	9	740
1	832	9.5	707
2	830	10	671
3	828	10.5	621
4	824	11	570
5	818	11.5	510
6	811	12	448
7	798	12.5	388
8	779		

Table S1. Temperatures distribution in the quartz tube.

Figure S2. Temperature control and distribution corresponding to Er-doping samples. The optimized temperatures used to grow S1 (0.18% Er-doping), S2 (0.87% Er-doping), and S3 (1.02% Er-doping) are 520, 570, and 620 °C, respectively.

2, Materials Characterizations

Figure S3. Characterization of undoped- and Er-doped CsPbCl_{3x}Br_{3(1-x)}. (a) optical image and (b) SEM image of undoped CsPbCl_{3x}Br_{3(1-x)}. (b₁-b₅) Elemental mappings of Cs, Pb, Cl, and Br in the MP shown in panel b. (c) SEM image of 0.87% Er-doped CsPbCl_{3x}Br_{3(1-x)}. (d₁-d₅) Elemental mappings of Cs, Pb, Cl, Br, and Er in the MP shown in panel c. (e) SEM image of 1.02% Er-doped CsPbCl_{3x}Br_{3(1-x)}. (f₁-f₅) Elemental mappings in the MP shown in panel e.

Weight (%)	Growth temperature	Er	Cs	Pb	Cl	Br	Cs+Pb	Cl+Br
	(*C)	0.18	20.07	19.88	33.60	26.26	39.95	59.86
	510	0.46	21.04	20.89	36.03	21.58	41.93	57.61
		-	19.73	19.91	24.22	36.14	39.64	60.36
Atomic	570	0.81	19.98	21.62	37.53	20.06	41.60	57.59
Iraction		0.87	23.23	15.95	20.89	39.06	39.18	59.06
	620	1.02	22.89	19.57	25.17	31.34	42.46	56.51
	020	1.46	21.40	21.59	31.08	24.47	42.99	55.55

Table S2. The molar percentage of Er, Cs, Pb, Cl, and Br in pure $CsPbCl_{3x}Br_{3(1-x)}$ and Er-doped $CsPbCl_{3x}Br_{3(1-x)}$ grown at 510, 570, 620 °C.

Figure S4. The molar percentage of (Cs^++Pb^{2+}) and (Cl^-+Br^-) as a function of the molar percentage of Er^{3+} .

Table S3. The molar percentage of Cs, Pb, Cl, and Br in pure $CsPbCl_{3x}Br_{3(1-x)}$ grown at 510, 570, 620 °C.

Weight (%)	Growth temperature (°C)	Er	Cs	Pb	Cl	Br	Cs+Pb	Cl+Br
	510	20.4	20.1	31.6	27.9	40.5	59.5	20.4
	510	19.5	19.9	31.5	29.1	39.4	60.6	19.5
	570	20.0	19.7	31.1	29.2	39.7	60.3	20.0
Atomic	570	20.0	20.2	31.6	28.2	40.2	59.8	20.0
Iraction	(20)	19.7	19.9	28.7	31.7	39.6	60.4	19.7
	620	20.3	20.1	28.6	31.0	40.4	59.6	20.3
	Average mole					40.0	60.0	

ratio

3, Optical characterization of undoped and Er-doped CsPbBr_{3x}Cl_{3(1-x)}.

Figure S5. PL spectrum and bimodal Gaussian fitting of band-edge emission at 456 nm of 0.87% Er-doped CsPbBr_{3x}Cl_{3(1-x)}.

Table S4. The molar percentage of Er, Cl, Br in pure, 0.87% Er, and 1.02% Er-doped $CsPbCl_{3x}Br_{3(1-x)}$ with emission peaks at 481nm, 481 (456)nm, and 475 nm.

Sample	Er (%)	Cl (%)	Br (%)	Cl/Br	Cl/(Cl+Br)
Pure (481nm)	0	24.2	36.2	0.67	0.4
0.87%-Er (481nm	0.9	20.9	39.1	0.53	0.35
(456nm))					
0.87%-Er (475nm)	1.0	25.2	31.3	0.81	0.45

Figure S6. PL spectra of 0.18%, 0.46%, 0.81%, and 1.46% Er-doped CsPbBr_{3x}Cl_{3(1-x)}.

4, Dynamics analysis for the undoped- and Er-doped CsPbCl_{3x}Br_{3(1-x)}.

Figure S7. Streak camera images of (a) undoped, (b) 0.87%, and (c) 1.02% Er-doped $CsPbCl_{3x}Br_{3(1-x)}$.

	τ_1 (ps)	$A_1(\%)$	$\tau_2 (ps)$	$A_2(\%)$	$\tau_{average} (ps)$
481nm	504.7	77.4	2474.4	22.6	1664
456 nm	92.3	78.0	596.1	22.0	417.5
475 nm	5.2 ps	75.5	13.0 ps	24.5	8.7
he decay cur	ves are fitted	l by a biexpo	onential func	$t_{tion:} I(t) = I$	$A_1e^{/\tau_1}+A_2e^{/\tau}$
ne deedy edi					
ne decay cur				т	$=\frac{a_1\tau_1^2+a_2\tau_2^2}{a_1\tau_1^2+a_2\tau_2^2}$

Table S5. Fitting parameters of the dynamic curves for narrowband emission of the undoped, 0.87%, and 1.02% Er-doped CsPbCl_{3x}Br_{3(1-x)}.

Table S6. Fitting parameters of the dynamic curves for broadband emission of the 0.87% and 1.02% Er-doped CsPbCl_{3x}Br_{3(1-x)}.

	τ_1 (ps)	$A_1(\%)$	$\tau_2(ps)$	$A_2(\%)$	τ_{average} (ps)
683 nm	269.6	56.9	1874.8	43.1	1868.7
810 nm	2.3 ns	7.4	0.7 ns	92.6	1.03 ns
he decay curve	es are fitted	by a biexpo	onential func	tion: $I(t) = A$	$A_1 e^{-t/\tau_1} + A_2 e^{-t/\tau}$
					2 2

5, Power-dependent PL spectra for 1.02% Er-doped CsPbCl_{3x}Br_{3(1-x)}.

Figure S8. Excitation power-dependent PL spectra of the 1.02% Er-doped CsPbBr_{3x}Cl_{3(1-x)} for an excitation wavelength of 532 nm. Excitation power: 4.64-296.98 W/cm²). A continuous laser with a wavelength of 532nm was used to excite 1.02%-Er-doped CsPbCl_{3x}Br_{3(1-x)}, and the 1.02%-Er dopped sample cannot be excited. When the excitation power is higher than 74.25 W/cm², the peak at 535nm is the remaining laser after the 532nm long-pass filter.

Figure S9. PL spectra of CsPbBr₃ and Er-doped CsPbBr₃.

6, Computational Methods

Figure S10. The partial charge densities of holes and of electrons $CsPbCl_{3x}Br_{3(1-x)}$ under different doping concentrations. (a-c) is the density of holes electrons, and (d-f) is the density of electrons.

Figure S11. The projected density of states of material $CsPbCl_{3x}Br_{3(1-x)}$ under different Er doping concentrations. (a-c) represent the projected density of states when the doping concentrations are 0.313%, 0.625%, and 1.250%, respectively.

Figure S12. (a-c) is the optimized crystal structures, and (d-f) is band structure of $CsPbCl_{3x}Br_{3(1-x)}$ doped with 0.313%, 0.625%, and 1.250% Er ions with Br vacancies.